Skip to main content
Log in

Varieties of finite supersolvable groups with the M. Hall property

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The varieties in the title are shown to be precisely the product varieties G p *Ab(d) for some prime p and some positive integer d dividing p−1. Here G p denotes the variety of all finite p-groups and Ab(d) the variety of all finite Abelian groups of exponent dividing d. It turns out that these are exactly those varieties H of supersolvable groups for which all finitely generated free pro-H groups are freely indexed in the sense of Lubotzky and van den Dries. Several alternative characterizations of these varieties are presented. Some applications to formal language theory and finite monoid theory are also given. Among these is the determination of all supersolvable solutions H to the equations PH = J*H and J*H = J H which is, to the present date, the most complete solution to a problem raised by Pin. Another consequence of our results is that for each such variety H the monoid variety PH = J*H = J H has decidable membership.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, J., Margolis, S.W., Volkov, M.V.: The pseudovariety of semigroups of triangular matrices over a finite field. Theor. Inform. Appl. 39, 31–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auinger, K., Steinberg, B.: The geometry of profinite graphs with applications to free groups and finite monoids. Trans. Amer. Math. Soc. 356, 805–851 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auinger, K., Steinberg, B.: On power groups and embedding theorems for relatively free profinite monoids. Math. Proc. Camb. Phil. Soc. 138, 211–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics 4, Berlin New York, 1992

  5. Eilenberg, S.: Automata, Languages and Machines, Academic Press, New York, Vol B, 1976

  6. Eilenberg, S., Schützenberger, M.P.: On pseudovarieties. Adv. Math. 19, 413–418 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gildenhuys, D., Ribes, L.: Profinite groups and Boolean graphs. J. Pure Appl. Algebra 12, 21–47 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gorenstein, D.: Finite Groups, Harper & Row, New York, 1968

  9. Hall, M.: Coset representation in free groups. Trans. Amer. Math. Soc. 67, 421–432 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hall, M.: A topology for free groups and related groups. Ann. Math. 52, 127–139 (1950)

    Article  MATH  Google Scholar 

  11. Hall, M.: The Theory of Groups, The Macmillan Co., New York, N.Y. 1959

  12. Henckell, K., Margolis, S.W., Pin, J.-E., Rhodes, J.: Ash's type II theorem, profinite topology and Mal'cev products, Part I. Internat. J. Algebra Comput. 1, 411–436 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kapovich, I., Myasnikov, A.: Stallings foldings and subgroups of free groups. J. Algebra 248, 608–668 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lubotzky, A., van den Dries, L.: Subgroups of free profinite groups and large subfields of . Israel J. Math. 39, 25–45 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Lubotzky, A.: Combinatorial group theory for pro-p groups. J. Pure Appl. Algebra 25, 311–325 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lubotzky, A.: Pro-finite presentations. J. Algebra 242, 672–690 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory, Springer-Verlag, 1977

  18. Margolis, S.W., Sapir, M., Weil, P.: Closed subgroups in pro-V topologies and the extension problem for inverse automata. Internat. J. Algebra Comput. 11, 405–445 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neumann, H.: Varieties of Groups. Springer, Berlin Heidelberg New York, 1967

  20. Nikolov, N., Segal, D.: Finite index subgroups in profinite groups. C. R. Math. Acad. Sci. 337, 303–308 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Pin, J.-E.: BG = PG, a success story. In: Fountain, J.B. (ed.) Semigroups, Formal Languages and Groups, Kluwer, Dordrecht, 1995, pp. 33–47

  22. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of language theory. Vol. I, Springer Verlag, Berlin Heidelberg New York, Chap. 10, 1997, pp. 679–746

  23. Ribes, L., Zalesskii, P.A.: On the profinite topology on a free group. Bull. London Math. Soc. 25, 37–43 (1993)

    MATH  MathSciNet  Google Scholar 

  24. Ribes, L., Zalesskii, P.A.: The pro-p topology of a free group and algorithmic problems in semigroups. Internat. J. Algebra Comput. 4, 359–374 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ribes, L., Zalesskii, P.A.: Pro-p Trees and Applications. In: Du Sautoy, M., Segal, D., Shalev, A. (eds.) New Horizons in pro-p Groups. Birkhäuser, Boston, 2000, pp. 75–119

  26. Ribes, L., Zalesskii, P.A.: Profinite Groups, Springer, Berlin, 2000

  27. Serre, J.-P.: Trees, Springer-Verlag, Berlin Heidelberg New York, 1980

  28. Stallings, J.: Topology of finite graphs. Invent. Math. 71, 551–565 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Steinberg, B.: Inevitable graphs and profinite topologies: Some solutions to algorithmic problems in monoid and automata theory stemming from group theory. Internat. J. Algebra Comput. 11, 25–71 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Steinberg, B.: Finite state automata: A geometric approach. Trans. Amer. Math. Soc. 353, 3409–3464 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Steinberg, B.: Inverse automata and profinite topologies on a free group. J. Pure Appl. Algebra 167, 341–359 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Auinger.

Additional information

The authors gratefully acknowledge the support of NSERC

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auinger, K., Steinberg, B. Varieties of finite supersolvable groups with the M. Hall property. Math. Ann. 335, 853–877 (2006). https://doi.org/10.1007/s00208-006-0767-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0767-2

Mathematics Subject Classification (2000)

Keywords

Navigation