Mathematische Annalen

, Volume 333, Issue 1, pp 29–43

Integrability of induction cocycles for Kac-Moody groups

Authors

    • Institut Camille Jordan, UMR 5208-CNRS / Lyon 1Université de Lyon 1-Claude Bernard
Article

DOI: 10.1007/s00208-005-0663-1

Cite this article as:
Rémy, B. Math. Ann. (2005) 333: 29. doi:10.1007/s00208-005-0663-1

Abstract

We prove that whenever a Kac-Moody group over a finite field is a lattice of its buildings, it has a fundamental domain with respect to which the induction cocycle is Lp for any p ∈ [1;+∞). The proof uses elementary counting arguments for root group actions on buildings. The applications are the possibility to apply some lattice superrigidity, and the normal subgroup property for Kac-Moody lattices.

Mathematics Subject Classification (2000)

22F5022E2051E2453C2422E4017B67

Copyright information

© Springer-Verlag Berlin Heidelberg 2005