1.

Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. **82**, 313–345 (1983)

2.

Bourgain, J.: Global solutions of nonlinear Schrödinger equations. American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, 1999

3.

Bourgain, J., Wang, W.: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **25**(1–2), 197–215 (1997) (1998)

4.

Cazenave, Th., Weissler, F.: Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, 1989

5.

Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. **32**, 1–32 (1979)

6.

Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Theor. **46**, 113–129 (1987)

7.

Kwong, M. K.: Uniqueness of positive solutions of Δ

*u*-

*u*+

*u*^{
p
}=0 in

*R*^{
n
}. Arch. Rational Mech. Anal.

**105**, 243–266 (1989)

CrossRef8.

Landman, M. J., Papanicolaou, G. C., Sulem, C., Sulem, P.-L.: Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) **38**, 3837–3843 (1988)

9.

Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J.

**69**, 427–454 (1993)

CrossRef10.

Merle, F., Raphael, P.: Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. To appear in Ann. of Math.

11.

Merle, F., Raphael, P.: Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation. Geom. Funct. Anal.

**13**, 591–642 (2003)

CrossRef12.

Merle, F., Raphael, P.: On universility of blow-up profile for

*L*^{2} critical non linear Schrödinger equation. Invent. Math.

**156**, 565–572 (2004)

CrossRefMathSciNet13.

Perelman, G.: On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D. Ann. H. Poincaré **2**, 605–673 (2001)

14.

Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. **16**, 472–491 (1985)

15.

Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys.

**87** , 567–576 (1983)

MATH