Archive for Rational Mechanics and Analysis

, Volume 158, Issue 1, pp 29–59

High-Field Limit for the Vlasov-Poisson-Fokker-Planck System

  • Juan Nieto
  • Frédéric Poupaud
  • Juan Soler

DOI: 10.1007/s002050100139

Cite this article as:
Nieto, J., Poupaud, F. & Soler, J. Arch. Rational Mech. Anal. (2001) 158: 29. doi:10.1007/s002050100139

Abstract:

This paper is concerned with the analysis of the stability of the Vlasov-Poisson-Fokker-Planck system with respect to the physical constants. If the scaled thermal mean free path converges to zero and the scaled thermal velocity remains constant, then a hyperbolic limit or equivalently a high-field limit equation is obtained for the mass density. The passage to the limit as well as the existence and uniqueness of solutions of the limit equation in L1, global or local in time, are analyzed according to the electrostatic or gravitational character of the field and to the space dimension. In the one-dimensional case a new concept of global solution is introduced. For the gravitational field this concept is shown to be equivalent to the concept of entropy solutions of hyperbolic systems of conservation laws.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Juan Nieto
    • 1
  • Frédéric Poupaud
    • 2
  • Juan Soler
    • 3
  1. 1.Departamento de Matemática Aplicada¶Facultad de Ciencias, Universidad de Granada¶18071 Granada, Spain¶e-mail: jjmnieto@ugr.esES
  2. 2.Laboratoire J. A. Dieudonné, U.M.R. 6621 C.N.R.S.¶Université de Nice¶Parc Valrose, 06108 Nice Cedex 2, France¶e-mail: poupaud@unice.frFR
  3. 3.Departamento de Matemática Aplicada¶Facultad de Ciencias, Universidad de Granada¶18071 Granada, Spain¶e-mail: jsoler@ugr.esES

Personalised recommendations