Skip to main content
Log in

Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. More precisely, we prove that the empirical measure (respectively the discretised density) obtained from the follow-the-leader system converges in the 1–Wasserstein topology (respectively in \({\mathbf{L^{1}_{loc}}}\)) to the unique Kružkov entropy solution of the conservation law. The initial data are taken in \({\mathbf{L}^\infty}\), nonnegative, and with compact support, hence we are able to handle densities with a vacuum. Our result holds for a reasonably general class of velocity maps (including all the relevant examples in the applications, for example in the Lighthill-Whitham-Richards model for traffic flow) with a possible degenerate slope near the vacuum state. The proof of the result is based on discrete \({\mathbf{BV}}\) estimates and on a discrete version of the one-sided Oleinik-type condition. In particular, we prove that the regularizing effect \({\mathbf{L}^\infty \mapsto \mathbf{BV}}\) for nonlinear scalar conservation laws is intrinsic to the discrete model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

  2. Aubin J.P.: Macroscopic traffic models: Shifting from densities to ‘celerities’. Appl. Math. Comput. 217(3), 963–971 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63(1), 259–278 (2002)

  4. Aw, A., Rascle, M.: Resurrection of ‘second order’ models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

  5. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics. Discrete Contin. Dyn. Syst. B 19, 1869–1888 (2014)

  6. Berthelin, F., Degond, P., Delitala, M., Rascle, M.: A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal. 187(2), 185–220 (2008)

  7. Bolley, F., Brenier, Y., Loeper, G.: Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ. 2(1), 91–107 (2005)

  8. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (electronic) (1998)

  9. Brenier, Y., Osher, S.: The discrete one-sided Lipschitz condition for convex scalar conservation laws. SIAM J. Numer. Anal. 25(1), 8–23 (1988)

  10. Bressan A.: Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170(2), 414–432 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bressan, A.: Hyperbolic systems of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford (2000)

  12. Carrillo, J.A., Di Francesco, M., Lattanzio, C.: Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differ. Equ. 231(2), 425–458 (2006)

  13. Chen, G.Q., Rascle, M.: Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal. 153(3), 205–220 (2000)

  14. Colombo, R.M., Marson, A.: A Hölder continuous ODE related to traffic flow. Proc. R. Soc. Edinburgh Sect. A 133(4), 759–772 (2003)

  15. Colombo, R.M., Rossi, E.: On the micro-macro limit in traffic flow. Rendiconti dell’Università di Padova 131, 217–235 (2014)

  16. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Applied Mathematical Sciences. Springer (1976)

  17. Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)

  18. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin (2000)

  19. Daganzo, C.F.: A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transp. Res. Part B: Methodol. 39(2), 187–196 (2005)

  20. Degond, P., Delitala, M.: Modelling and simulation of vehicular traffic jam formation. Kinetic Related Models 1, 279–293 (2008)

  21. Di Francesco, M., Matthes, D.: Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. Calc. Var. PDEs. doi:10.1007/s00526-013-0633-5 (2013)

  22. DiPerna, R.J.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 20(1), 187–212 (1976)

  23. Dobrušin, R.L.: Vlasov equations. Funktsional. Anal. i Prilozhen. 13(2), 48–58, 96 (1979)

  24. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions, vol. 5. CRC press 1991

  25. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)

  26. Golse, F., Perthame, B.: Optimal regularizing effect for scalar conservation laws. Rev. Mat. Iberoam. 29(4), 1477–1504 (2013). doi:10.4171/RMI/765

  27. Goodman, J.B., LeVeque, R.J.: A geometric approach to high resolution TVD schemes. SIAM J. Numer. Anal. 25(2), 268–284 (1988)

  28. Greenberg, H.: An analysis of traffic flow. Oper. Res. 7(1), 79–85 (1959)

  29. Greenshields, B.: A study of traffic capacity. Proceedings of the Highway Research Board 14, 448–477 (1935)

  30. Hoff, D.: The Sharp Form of Oleinik’s Entropy Condition in Several Space Variables. Trans. Am. Math. Soc. 276(2), 707–714 (1983)

  31. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. Delft University of Technology, Delft, pp. 283–303 (2001)

  32. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (123), 228–255 (1970)

  33. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1973). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11

  34. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. London. Ser. A. 229, 317–345 (1955)

  35. MacCamy, R.C., Socolovsky, E.: A numerical procedure for the porous media equation. Comput. Math. Appl. 11(1-3), 315–319 (1985). Hyperbolic partial differential equations, II

  36. Matthes, D., Osberger, H.: Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal. 48, 697–726 (2014)

  37. Morrey Jr., C.B.: On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math. 8, 279–326 (1955)

  38. Newell, G.F.: A simplified theory of kinematic waves in highway traffic. Transp. Res. Part B Methodol. 27(4), 281–313 (1993)

  39. Oleinik, O.A.: Discontinuous solutions of non-linear differential equations. Uspekhi Matematicheskikh Nauk 12(3), 3–73 (1957)

  40. Oleinik, O.A.: Discontinuous solutions of non-linear differential equations. Am. Math. Soc. Transl. 26(2), 95–172 (1963)

  41. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(2), 117–149 (1944)

  42. Piccoli, B., Tosin, A.: Vehicular traffic: A review of continuum mathematical models. In: R.A. Meyers (ed.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

  43. Pipes, L.A.: Car following models and the fundamental diagram of road traffic. Transp. Res. 1, 21–29 (1967)

  44. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

  45. Rosini, M.D.: Macroscopic models for vehicular flows and crowd dynamics: theory and applications. Understanding Complex Systems. Springer, Heidelberg (2013). doi:10.1007/978-3-319-00155-5

  46. Rossi, E.: On the micro–macro limit in traffic flow. Master’s thesis, Università Cattolica del Sacro Cuore, Brescia 2013

  47. Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(2), 395–431 (2003)

  48. Russo, G.: Deterministic diffusion of particles. Comm. Pure Appl. Math. 43(6), 697–733 (1990)

  49. Serre, D.: Systems of conservation laws. 1 & 2. Cambridge University Press, Cambridge 1999

  50. Tadmor, E.: The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme. Math. Comp. 43(168), 353–368 (1984)

  51. Underwood, R.T.: Speed, volume, and density relationship. In: Quality and theory of traffic flow: a symposium, pp. 141–188. Greenshields, B.D. and Bureau of Highway Traffic, Yale University (1961)

  52. Villani, C.: Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI 2003

  53. Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B Methodol. 36(3), 275–290 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Francesco.

Additional information

Communicated by A. Bressan

M. Di Francesco is supported by the Marie Curie CIG (Career Integration Grant) DifNonLoc - Diffusive Partial Differential Equations with Nonlocal Interaction in Biology and Social Sciences and by the Ministerio de Ciencia e Innovación, grant MTM2011-27739-C04-02. M.D. Rosini is supported by ICM. Projekt został sfinansowany ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji nr: DEC-2011/01/B/ST1/03965.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Francesco, M., Rosini, M. Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit. Arch Rational Mech Anal 217, 831–871 (2015). https://doi.org/10.1007/s00205-015-0843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0843-4

Keywords

Navigation