Skip to main content
Log in

Diffractive Geometric Optics for Bloch Wave Packets

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study, for times of order \({1/\varepsilon}\), solutions of wave equations which are \({\fancyscript{O}(\varepsilon^2)}\) modulations of an \({\varepsilon}\) periodic wave equation. The solutions are of slowly varying amplitude type built on Bloch plane waves with wavelength of order \({\varepsilon}\). We construct accurate approximate solutions of the three scale WKB type. The leading profile is both transported at the group velocity and dispersed by a Schrödinger equation given by the quadratic approximation of the Bloch dispersion relation at the plane wave. A ray average hypothesis of the small divisor type guarantees stability. We introduce techniques related to those developed in nonlinear geometric optics which lead to new results even on time scales \({t=\fancyscript{O}(1)}\). A pair of asymptotic solutions yield accurate approximate solutions of oscillatory initial value problems. The leading term yields H 1 asymptotics when the envelopes are only H 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert J.H.: Genericity of simple eigenvalues for elliptic PDE’s. Proc. A.M.S. 48, 413–418 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Allaire G.: Dispersive limits in the homogenization of the wave equation. Annales de la Faculté des Sciences de Toulouse XII, 415–431 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G., Palombaro M., Rauch J.: Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Annali di Matematica Pura e Applicata 188, 561–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altug H., Vuckovic J.: Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 86, 111102–11111023 (2004)

    Article  ADS  Google Scholar 

  5. Bajcsy M., Zibrov A., Lukin M.: Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003)

    Article  ADS  Google Scholar 

  6. Bamberger A., Engquist B., Halpern L., Joly P.: Parabolic wave equation approximations in heterogenous media. SIAM J. Appl. Math. 48(1), 99–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrailh K., Lannes D.: A general framework for diffractive optics and its applications to lasers with large spectrum and short pulses. SIAM J. Math. Anal. 34(3), 636–674 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1978

    MATH  Google Scholar 

  9. Bloch F.: Uber die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)

    Article  ADS  MATH  Google Scholar 

  10. Brahim-Otsmane S., Francfort G., Murat F.: Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71(9), 197–231 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Brillouin L.: Propagation of Waves in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  12. Conca C., Planchard J., Vanninathan M.: Fluids and Periodic Structures. RMA 38, Wiley Paris (1995)

    MATH  Google Scholar 

  13. Conca C., Orive R., Vanninathan M.: On Burnett coefficients in strongly periodic media. J. Math. Phys. 47(3), 032902 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Donnat, P., Joly, J.-L., Métivier, G., Rauch, J.: Diffractive nonlinear geometric optics. Séminaire sur les Equations aux Dérivées Partielles 1995–1996, Exp. No. XVII, 25 pp. Ecole Polytechnique, Palaiseau, 1996

  15. Donnat, P., Rauch, J.: Modeling the Dispersion of Light. Singularities and Oscillations (Minneapolis, MN, 1994/1995), 17–35. IMA Vol. Math. Appl., 91. Springer, New York, 1997

  16. Donnat P., Rauch J.: Dispersive nonlinear geometric optics. J. Math. Phys. 38(3), 1484–1523 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dumas E.: Diffractive optics with curved phases: beam dispersion and transitions between light and shadow. Asymptot. Anal. 38(1), 47–91 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Francfort G., Murat F.: Oscillations and energy densities in the wave equation. Commun. Partial Differ. Equ. 17, 1785–1865 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gérard P., Markowich P., Mauser N., Poupaud F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gersen H., Karle T., Engelen R., Bogaerts W., Korterik J., van Hulst N., Krauss T., Kuipers L.: Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903–10739034 (2005)

    Article  ADS  Google Scholar 

  21. Hau L.V., Harris S.E., Dutton Z., Behroozi C.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  22. Joly J.-L., Métiver G., Rauch J.: Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70, 373–404 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Joly J.-L., Métiver G., Rauch J.: Diffractive nonlinear geometric optics with rectification. Indiana U. Math. J. 47, 1167–1242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  25. Kuchment P.: Floquet theory for partial differential equations. Operator Theory: Advances and Applications, Vol. 60. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  26. Kuchment, P.: The mathematics of photonic crystals. Mathematical Modeling in Optical Science, 207–272. Frontiers Appl. Math., Vol. 22. SIAM, Philadelphia, 2001

  27. Lannes D.: Dispersive effects for nonlinear geometrical optics with rectification. Asymptot. Anal. 18(1–2), 111–146 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Lax P.D.: Asymptotic solutions of oscillatory initial value problems. Duke Math. J. 24, 627–646 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leontovich M., Fock V.: Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation. Acad. Sci. USSR. J. Phys. 10, 13–24 (1946)

    MathSciNet  MATH  Google Scholar 

  30. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1978)

    MATH  Google Scholar 

  31. Russell P.St.J.: Photonic crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  32. Santosa F., Symes W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sipe J., Winful H.: Nonlinear Schrödinger equations in periodic structure. Optics Lett. 13, 132–133 (1988)

    Article  ADS  Google Scholar 

  34. de Sterke C., Sipe J.: Envelope-function approach for the electrodynamics of nonlinear periodic structures. Phys. Rev. A 38, 5149–5165 (1988)

    Article  ADS  Google Scholar 

  35. Tappert, F.: The parabolic approximation method. Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), 224–287. Lecture Notes in Phys., Vol. 70. Springer, Berlin, 1977

  36. Tartar L.: H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinburgh 115, 193–230 (1990)

    Article  MATH  Google Scholar 

  37. Vlasov Y.A., Petit S., Klein G., Hönerlage B., Hirlmann C.: Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal. Phys. Rev. E 60, 1030–1035 (1999)

    Article  ADS  Google Scholar 

  38. Wilcox C.: Theory of Bloch waves. J. Anal. Math. 33, 146–167 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Allaire.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, G., Palombaro, M. & Rauch, J. Diffractive Geometric Optics for Bloch Wave Packets. Arch Rational Mech Anal 202, 373–426 (2011). https://doi.org/10.1007/s00205-011-0452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0452-9

Keywords

Navigation