Skip to main content

Advertisement

Log in

Modeling of Cracks with Nonlinear Effects at the Tip Zones and the Generalized Energy Criterion

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Starting with a plane anisotropic homogeneous elasticity problem in a domain with an interior crack, we develop a mathematical frame where nonlinear effects in the tip zones like crack kinking or plastic zones can be modeled in an enlarged state space with the help of additional conditions at the crack tips. Using generalized Green’s formulae, we show that the solutions to these problems turn out to minimize energy functionals which contain terms additional to the classical elastic energy and work of external forces. They can be interpreted as performed work and energy stored in the crack tips. Within the theory of matched asymptotic expansions, the general type of these energy functionals can be characterized in a form applicable to mechanical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.: Sobolev Spaces, 2nd edn. Academic Press, Elsevier, New York (2003)

    MATH  Google Scholar 

  2. Agmon, R.A., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959). II. Commun. Pure Appl. Math. 17, 35–92 (1964)

  3. Argatov, I., Nazarov, S.: Energy release due to kinking of a crack in a plane anisotropic body. Prikl. Mat. Mech. 66(3), 502–514 (2002). English transl.: J. Appl. Math. Mech. 66(3), 491–503 (2002)

    Google Scholar 

  4. Arnold, V.I.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics, Vol. 60, 2nd edn. Springer, New York, 1989

    Google Scholar 

  5. Bourdin, B., Francfort, G.A., Marigo, J.J.: The Variational Approach to Fracture. Springer, New York, 2008. doi:10.1007/978-1-4020-6395-4. http://dx.doi.org/10.1007/978-1-4020-6395-4. Reprinted from J. Elasticity 91, no. 1–3 (2008) [MR2390547], With a foreword by Roger Fosdick

  6. Bueckner, H.F.: A novel principle for the computation of stress intensity factor. ZAMM 50, 529–546 (1976)

    MathSciNet  Google Scholar 

  7. Duduchava, R., Wendland, W.L.: The Wiener-Hopf method for systems of pseudodifferential equations with an application to crack problems. Integr. Equ. Oper. Theory 23(3), 294–335 (1995)

    Article  Google Scholar 

  8. Dugdale, D.S.: Yielding of steel containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  ADS  Google Scholar 

  9. Griffith, A.A.: The phenomna of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A 221, 163–298 (1921)

    Article  ADS  Google Scholar 

  10. Griffith, A.A.: The theory of rupture. Proc. First Int. Congr. App. Mech., pp. 55–63 (1924)

  11. Gross, D., Seelig, T.: Bruchmechanik, vol. 3. Auflage. Springer, 2001

  12. Il’in, A.: Matching of asymptotic expansions of solutions of boundary value problems. (Soglasovanie asimptoticheskikh razlozhenij reshenij kraevykh zadach). Moskva: Nauka. 336 p. R. 4.30 (1989)

  13. Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  14. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. Advances in Fracture Mechanics. WIT Press, Southhampton, Boston 2000

    Google Scholar 

  15. Khludnev, A.M., Sokolowski, J.: Griffith formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A Solids 19(1), 105–119 (2000). http://dx.doi.org/10.1016/S0997-7538(00)00138-8

  16. Knees, D., Mielke, A.: Energy release rate for cracks in finite-strain elasticity. Math. Methods Appl. Sci. 31(5), 501–528 (2008). http://dx.doi.org/10.1002/mma.922

  17. Kondratiev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)

    Google Scholar 

  18. Kondratiev, V.A., Oleĭnik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Uspekhi Mat. Nauk 43(5), 55–98, 239 (1988)

    Google Scholar 

  19. Kozlov, V., Maz’ya, V., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, 1997

  20. Leblond, J.B.: Brittle fracture and ductile fracture. (Mécanique de la rupture fragile et ductile.). Études en Mécanique des Matériaux et des Structures. Hermes Science Publications, Paris, 2003

    Google Scholar 

  21. Leblond, J.B., Frelat, J.: Crack kinking from an initially closed crack. Int. J. Solids Struct. 37(11), 1595–1614 (2000)

    Article  MATH  Google Scholar 

  22. Lekhnitskij, S.: Theory of Elasticity of an Anisotropic Elastic Body. Translated by P. Fern. Holden-Day Series in Mathematical Physics. Holden-Day, Inc., San Francisco, XII, p 404, 1963

  23. Leonov, M.Y., Panasyuk, V.V.: The development of fine cracks in a rigid body. Prikl. Mekh. 4, 391–401 (1959)

    MathSciNet  Google Scholar 

  24. Maugin, G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, 1992

  25. Maz’ja, V.G., Plamenevskiï, B.A.: On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nach. 76, 29–60 (1977). Engl. transl. in Amer. Math. Soc. Transl. 123, 57–89 (1984)

  26. Maz’ya, V., Nazarov, S., Plamenevskii, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I. Operator Theory: Advances and Applications, Vol. 111. Birkhäuser Verlag, 2000. Translated from German

  27. Maz’ya, V., Nazarov, S., Plamenevskii, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. II. Operator Theory: Advances and Applications, Vol. 112. Birkhäuser Verlag, 2000. Translated from German

  28. Nazarov, S.: Local stability and nonstability of mode-one cracks. Mekhanika tverd. tela 3, 124–129 (1988). English transl.: Mech. Solids 23, 117–122 (1988)

  29. Nazarov, S.: Weight functions and invariant integrals. Vychisl. Mekh. Deform. Tverd. Tela 1, 17–31 (1990, in Russian)

  30. Nazarov, S.: Asymptotic conditions at a point, selfadjoint extensions of operators and the method of matched asymptotic expansions. Trudy St.-Petersburg Mat. Obshch. 5, 112–183 (1996). English transl.: Trans. Am. Math. Soc. Ser. 193(2), 77–126 (1999)

  31. Nazarov, S.: The interface crack in anisotropic bodies. stress singularities and invariant integrals. Prikl. Mat. Mekh. 62(3), 489–502 (1998). English transl.: J. Appl. Math. Mech. 62(3), 453–464 (1998)

    Google Scholar 

  32. Nazarov, S.: A crack at the interface of anisotropic bodies. Singularities of the elastic fields and a criterion for fracture when the crack surfaces are in contact. Prikl. Mat. Mekh. 69(3), 539–551 (2005). English transl.: J. Appl. Math. Mech. 69(3), 473–484 (2005)

  33. Nazarov, S.: Stress intensity factors and crack deviation conditions in a brittle anisotropic solid. Prikl. Mekh. Techn. Fizika 36(3), 98–107 (2005). English transl.: J. Appl. Mech. Techn. Phys. 46(3), 386–394 (2005)

  34. Nazarov, S.: An asymptotic model of the griffith criterion under slight curving and kinking of a crack. Dokl. Ross. Akad. Nauk 408(4) (2006). English transl.: Doklady Physics (2006)

  35. Nazarov, S., Plamenevskii, B.: A generalized Green’s formula for elliptic problems in domains with edges. Probl. Mat. Anal. 13, 106–147 (1992). English transl.: J. Math. Sci. 73(6), 674–700 (1995)

  36. Nazarov, S., Plamenevsky, B.: Elliptic problems in domains with piecewise smooth boundaries. de Gruyter Expositions in Mathematics, Vol. 13. Walter de Gruyter and Co., Berlin (1994)

    Book  Google Scholar 

  37. Nazarov, S., Polyakova, O.: Rupture criteria, asymptotic conditions at crack tips, and selfadjoint extensions of the Lamé operator. Trudy Moskov. Mat. Obshch. 57, 16–75 (1996). English transl.: Trans. Moscow Math. Soc. 57, 13–66 (1996)

  38. Nazarov, S., Specovius-Neugebauer, M.: Selfadjoint extensions of the Neumann Laplacian in domains with cylindrical outlets. Commun. Math. Phys. 185(3), 689–707 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Necas, J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967

    MATH  Google Scholar 

  40. Parton, V.Z., Morozov, E.M.: Mechanics of Elastic-Plastic Fracture. Hemisphere Publishing Corp., Washington, 1989

  41. Richard H., Sander M.: Ermüdungsrisse (2009). Erkennen, sicher beurteilen, vermeiden. Vieweg+Teubner Verlag, Wiesbaden

    Google Scholar 

  42. Sander, M.: Einfluss variabler Belastung auf das Ermüdungsrisswachstum in Bauteilen und Strukturen. No. 287 in Reihe 18: Mechanik/Bruchmechanik. VDI-Verlag, Düsseldorf, 2003

    Google Scholar 

  43. Shet, C., Chandra, N.: Analysis of energy balance when using cohesive zone models to simulate fractures. ASME J. Eng. Mater. Techol. 124, 440–450 (2002)

    Article  Google Scholar 

  44. Specovius-Neugebauer, M., Nazarov, S.A.: Das dugdale kriterium in isotropen medien. In: Berichtsband der 40. Tagung des DVM-Arbeitskreises Bruchvorgänge Zuverlässigkeit von Bauteilen durch bruchmechanische Bewertung Regelwerke, Anwendungen und Trends. DVM, Stuttgart, 2008

  45. Zeidler, E.: Applied functional analysis, main principles and their applications. Applied Mathematical Sciences, Vol. 109. Springer, Berlin, 1995

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Specovius-Neugebauer.

Additional information

Communicated by A. Mielke

This research was supported by the DFG, SFB/TR TRR 30 “Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage thermomechanisch gekoppelter Phänomene” and the Russian Foundation for Basic Research, Grant 09-01-00759.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A., Specovius-Neugebauer, M. Modeling of Cracks with Nonlinear Effects at the Tip Zones and the Generalized Energy Criterion. Arch Rational Mech Anal 202, 1019–1057 (2011). https://doi.org/10.1007/s00205-011-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0444-9

Keywords

Navigation