1.

Amick, C.J., Toland, J.F.: The semi-analytic theory of standing waves. *Proc. Roy. Soc. Lond. A* **411**, 123–138 (1987)

2.

Arnol’d, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. *Russian Math. Surv.* **18**, 85–191 (1963)

3.

Bambusi, D., Paleari, S.: Families of periodic solutions of resonant PDEs.

*J. Nonlinear Sci.* **11**, 69–87 (2001)

CrossRef4.

Benjamin, T.B., Olver, P.J.: Hamiltonian structures, symmetries and conservation laws for water waves. *J. Fluid Mech.* **125**, 137–187 (1982)

5.

Berti, M., Bolle, P.: Periodic solutions of nonlinear wave equations with general nonlinearities.

*Comm. Math. Phys.* **243**, 315–328 (2003)

CrossRef6.

Berti, M., Bolle, P.: Multiplicity of periodic solutions of nonlinear wave equations.

*Nonlinear Analysis TMA* **56**, 1011–1046 (2004)

CrossRef7.

Boussinesq, J.: Essai sur la théorie des eaux courantes. *Mémoires présentés par divers savants à l’Académie des Sciences, Paris* **23**(1), 1–660 (1877)

8.

Brezis, H.: Periodic solutions of nonlinear vibrating strings and duality principles. *Bull. A.M.S.* **8** (3), 409–426 (1983)

9.

Chen, M., Iooss, G.: Standing waves for a two-way model system for water waves.

*Euro. J. Mech. B/Fluids* **24**, 113–124 (2005)

CrossRef10.

Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. *Comm. Pure Appl. Math.* **46**, 1409–1498 (1993)

11.

Craik, A.D.: The origins of water wave theory.

*Annual review of Fluid Mechanics* **36**, 1–28 (2004)

CrossRef12.

Dyachenko, A.I., Kuznetsov, E.A., Spector, M.D., Zakharov, Z.E.: Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping).

*Physics Letters A* **221**, 73–79 (1996)

CrossRef13.

Hörmander, L.: The boundary problems of physical geodesy. *Arch. Ration. Mech. Anal.* **62**, 1–52 (1976)

14.

Iooss, G.: On the standing wave problem in deep water.

*J. Math. Fluid Mech.* **4**, 155–185 (2002)

CrossRef15.

Iooss, G., Plotnikov, P.: Multimodal standing gravity waves: a completely resonant system. *J. Math. Fluid Mech.* **7**, S1, 110–126 (2005)

16.

Iooss, G., Plotnikov, P.: Existence of multimodal standing gravity waves. To appear in *J. Math. Fluid Mech.*

17.

Iooss, G., Plotnikov, P., Toland, J.F.: Standing waves on infinite depth. *Comptes Rendus Acad. Sci. Paris* **338**, 425–431 (2004)

18.

Morrey, C.B.: *Multiple Integrals in the Calculus of Variations*. Springer-Verlag, Berlin, 1966

19.

Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations I & II. *Ann. Scuola Norm. Sup. Pisa, Sci. Fiz. Mat., III. Ser.* **20**, 265–315 & 499–535 (1966)

20.

Okamura, M.: Standing waves of large amplitude in deep water.

*Wave Motion* **37**, 17–182 (2003)

CrossRef21.

Penney, G.W., Price, A.T.: Finite periodic stationary gravity waves in a perfect fluid. *Phil. Trans. Roy. Soc. A* **244**, 254–284 (1952)

22.

Plotnikov, P.I., Toland, J.F.: Nash-Moser theory for standing waves. *Arch. Ration. Mech. Anal.* **159**, 1–83 (2001)

23.

Poisson, S.D.: Mémoire sur la théorie des ondes (1816). *Mém. Acad. R. Sci. Inst.* France, 2nd Series **1**, 70–186 (1818)

24.

Rabinowitz, P.H.: Free vibrations for a semilinear wave equation. *Comm. Pure Appl. Math.* **31**, 31–68 (1978)

25.

Rayleigh, Lord: Deep water waves, progressive or stationary, to the third order of approximation. *Proc. R. Soc. London A* **91**, 345–353 (1915)

26.

Schwartz, L.W., Whitney, A.K.: A semi-analytic solution for nonlinear standing waves in deep water. *J. Fluid Mechanics* **107**, 147–171 (1981)

27.

Sekerkh-Zenkovich, Ya.I.: On the theory of standing waves of finite amplitude. *Doklady AN USSR* **58**, 551–553 (1947)

28.

Stokes, G.G.: On the theory of oscillatory waves. *Trans. Camb. Phil. Soc.* **8**, 441–455 (1847)

29.

Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. *Mathematical and Physical Papers Vol. I*, Cambridge, 225–228, 1880

30.

Tadjbaksh, I., Keller, J.B.: Standing surface waves of finite amplitude. *J. Fluid Mech.* **8**, 442–451 (1960)

31.

Taylor, G.I.: An experimental study of standing waves. *Proc. Roy. Soc. Lond. A.*, 44–59 (1953)

32.

Toland, J.F., Iooss, G.: Riemann-Hilbert and variational structure for standing waves. *Far East J. Appl. Math.* **15**(3), 459–488 (2004)

33.

Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. *Comm. Math. Phys.* **127**, 479–528 (1990)

34.

Wayne, C.E.: Periodic solutions of nonlinear partial differential equations.

*Notices of Amer. Math. Soc.* **44**, 895–902 (1997)

MathSciNet35.

Wehausen, J.: Free-surface flows. In: *Research Frontiers in Fluid Dynamics* (Ed. R. J. Seeger & G. Temple). Interscience, New York, 1965

36.

Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of deep fluid. *J. Appl. Mech. Tech. Phys.* **2**, 190–194 (1968)

37.

Zygmund, A.: *Trigonometric Series I & II*. Corrected reprint (1968) of 2nd. edition. Cambridge University Press, Cambridge, 1959