Skip to main content

Advertisement

Log in

Optimality in the zonation of ammonia detoxification in rodent liver

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The rodent liver eliminates toxic ammonia. In mammals, three enzymes (or enzyme systems) are involved in this process: glutaminase, glutamine synthetase and the urea cycle enzymes, represented by carbamoyl phosphate synthetase. The distribution of these enzymes for optimal ammonia detoxification was determined by numerical optimization. This in silico approach predicted that the enzymes have to be zonated in order to achieve maximal removal of toxic ammonia and minimal changes in glutamine concentration. Using 13 compartments, representing hepatocytes, the following predictions were generated: glutamine synthetase is active only within a narrow pericentral zone. Glutaminase and carbamoyl phosphate synthetase are located in the periportal zone in a non-homogeneous distribution. This correlates well with the paradoxical observation that in a first step glutamine-bound ammonia is released (by glutaminase) although one of the functions of the liver is detoxification by ammonia fixation. The in silico approach correctly predicted the in vivo enzyme distributions also for non-physiological conditions (e.g. starvation) and during regeneration after tetrachloromethane (CCl4) intoxication. Metabolite concentrations of glutamine, ammonia and urea in each compartment, representing individual hepatocytes, were predicted. Finally, a sensitivity analysis showed a striking robustness of the results. These bioinformatics predictions were validated experimentally by immunohistochemistry and are supported by the literature. In summary, optimization approaches like the one applied can provide valuable explanations and high-quality predictions for in vivo enzyme and metabolite distributions in tissues and can reveal unknown metabolic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CPS:

Carbamoyl phosphate synthetase

CCl4 :

Tetrachloromethane

G:

Glutamine

Glnase:

Glutaminase

GS:

Glutamine synthetase

References

  • Bartl M, Kotzing M, Schuster S, Li P, Kaleta C (2013) Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes. Nat Commun 4:2243. doi:10.1038/ncomms3243

    Article  PubMed  Google Scholar 

  • Colnot S, Perret C (2011) Liver zonation. In: Monga SPS (ed) Molecular pathology of liver diseases. Molecular pathology library, vol 5. Springer, Berlin, pp 7–16

    Chapter  Google Scholar 

  • Comar JF, Suzuki-Kemmelmeier F, Nascimento ÉA, Bracht A (2007) Flexibility of the hepatic zonation of carbon and nitrogen fluxes linked to lactate and pyruvate transformations in the presence of ammonia. Am J Physiol Gastrointest Liver Physiol 293(4):G838–G849. doi:10.1152/ajpgi.00120.2007

    Article  CAS  PubMed  Google Scholar 

  • Comar JF, Suzuki-Kemmelmeier F, Constantin J, Bracht A (2010) Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations. J Biomed Sci 17:1. doi:10.1186/1423-0127-17-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaasbeek-Janzen J, Lamers W, Moorman A, De Graaf A, Los J, Charles R (1984) Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver: evidence for a heterogeneous distribution. J Histochem Cytochem 32(6):557–564

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1992) Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther 53(3):275–354

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R, Matz-Soja M (2014) Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol 20(26):8491–8504. doi:10.3748/wjg.v20.i26.8491

    Article  PubMed Central  PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2(4):567–570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghallab AM (2013) Spatial-temporal modelling of liver damage as well as regeneration and its influence on metabolic liver function. Thesis, Justus-Liebig-Universität Gießen

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  Google Scholar 

  • Gimenes D, Constantin J, Comar JF, Kelmer-Bracht AM, Broetto-Biazon AC, Bracht A (2006) Liver parenchyma heterogeneity in the response to extracellular NAD+. Cell Biochem Funct 24(4):313–325. doi:10.1002/cbf.1228

    Article  CAS  PubMed  Google Scholar 

  • Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133(2):269–275

    Article  PubMed  Google Scholar 

  • Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267(2):281–290

    Article  PubMed Central  PubMed  Google Scholar 

  • Häussinger D, Gerok W (1984) Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis. Chem–Biol Interact 48(2):191–194

    Article  PubMed  Google Scholar 

  • Häussinger D, Gerok W, Sies H (1983) Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta 755(2):272–278

    Article  PubMed  Google Scholar 

  • Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    Book  Google Scholar 

  • Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK (2014) Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 96:121–129. doi:10.1016/j.biochi.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K (1983) Functional significance of hepatocyte heterogeneity for glycolysis and gluconeogenesis. Pharmacol Biochem Behav 18:409–414

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16(1):179–203

    Article  CAS  PubMed  Google Scholar 

  • Klipp E, Heinrich R, Holzhütter HG (2002) Prediction of temporal gene expression. Eur J Biochem 269(22):5406–5413

    Article  CAS  PubMed  Google Scholar 

  • Moorman AF, de Boer PA, Charles R, Lamers WH (1990) Diet-and hormone-induced reversal of the carbamoylphosphate synthetase mRNA gradient in the rat liver lobulus. FEBS Lett 276(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Moorman AFM, Deboer PAJ, Watford M, Dingemanse MA, Lamers WH (1994) Hepatic glutaminase mRNA is confined to part of the urea cycle domain in the adult rodent liver lobule. FEBS Lett 356(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Rump SM (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing. Springer, Berlin, pp 77–104

    Chapter  Google Scholar 

  • Schleicher J, Tokarski C, Marbach E et al (2015) Zonation of hepatic fatty acid metabolism—the diversity of its regulation and the benefit of modeling. Biochim Biophys Acta 1851(5):641–656. doi:10.1016/j.bbalip.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Schliess F, Hoehme S, Henkel SG et al (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60(6):2040–2051

    Article  CAS  PubMed  Google Scholar 

  • Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336(6081):601–604

    Article  CAS  PubMed  Google Scholar 

  • Smith DD Jr, Campbell JW (1988) Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver. Proc Natl Acad Sci USA 85(1):160–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teutsch HF (2005) The modular microarchitecture of human liver. Hepatology 42(2):317–325. doi:10.1002/hep.20764

    Article  PubMed  Google Scholar 

  • Toepfer S, Zellmer S, Driesch D, et al (2007) Compartment model of glutamine and ammonia metabolism in liver tissue. In: Scharff P (ed) Proceedings of the 52nd international scientific colloquium, Ilmenau, Germany, vol 2, pp 107–112

  • Ueberham E, Arendt E, Starke M, Bittner R, Gebhardt R (2004) Reduction and expansion of the glutamine synthetase expressing zone in livers from tetracycline controlled TGF-β1 transgenic mice and multiple starved mice. J Hepatol 41(1):75–81. doi:10.1016/j.jhep.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  • Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C (2011) Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 7(1):515. doi:10.1038/msb.2011.46

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaslaver A, Mayo AE, Rosenberg R et al (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36(5):486–491

    Article  CAS  PubMed  Google Scholar 

  • Zellmer S, Toepfer S, Driesch D, et al (2007) Modelling of hepatic glutamine metabolism. In: Allgöwer F, Reuss M (eds) Proceedings of the 2nd conference foundations of systems biology in engineering, Stuttgart, pp 183–187

Download references

Acknowledgments

Parts of this work have been supported by the German Virtual Liver Initiative (www.virtual-liver.de) of the German Federal Ministry of Education and Research (RG: 0315735, DD and SH: 0315760 and CK: 0315758) and the German Research Foundation (CK: KA 3541/3-1). We thank J. Schleicher, Ch. Tokarski and S. Vlaic for stimulating discussions.

Author contributions

MB, MP prepared and conducted the optimization. AG, JH prepared and conducted the experimental validation. MB, MP, SZ, PL conceived the main part of research. MB, SZ wrote the main part of manuscript. MP, AG, DD, SH, JH, SS, CK, RG involved in discussion and interpretation of results as well as writing parts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Bartl or Sebastian Zellmer.

Ethics declarations

Ethical approval

All procedures were in accordance with the ethical standards of the institution.

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Martin Bartl, Michael Pfaff and Ahmed Ghallab have contributed equally to this work.

Sebastian Zellmer and Pu Li shared senior authorship.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartl, M., Pfaff, M., Ghallab, A. et al. Optimality in the zonation of ammonia detoxification in rodent liver. Arch Toxicol 89, 2069–2078 (2015). https://doi.org/10.1007/s00204-015-1596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1596-4

Keywords

Navigation