Skip to main content
Log in

Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans

  • Biologicals
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan SE, Smith BW, Anderson KA (2012) Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ Sci Technol 46(4):2033–2039

    Article  PubMed  CAS  Google Scholar 

  • Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20(4):833–838

    PubMed  CAS  Google Scholar 

  • Anderson SE, Franko J, Lukomska E, Meade BJ (2011) Potential immunotoxicological health effects following exposure to corexit 9500a during cleanup of the deepwater horizon oil spill. J Toxicol Environ Health A Curr Issue 74(21):1419–1430

    Article  CAS  Google Scholar 

  • Anonymous (1998) Genome sequence of the nematode C. elegans : a platform for investigating biology. Science 282(5396):2012–2018

    Article  Google Scholar 

  • Ayyadevara S, Tazearslan C, Bharill P, Alla R, Siegel E, Shmookler Reis RJ (2009) Caenorhabditis elegans PI3 K mutants reveal novel genes underlying exceptional stress resistance and lifespan. Aging Cell 8(6):706–725

    Article  PubMed  CAS  Google Scholar 

  • Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci Off J Soc Neurosci 23(22):8060–8069

    CAS  Google Scholar 

  • Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicologic pathology (in press)

  • Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30(8):947–952

    Article  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  • Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P et al (2003) The gene ontology annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 13(4):662–672

    Article  PubMed  CAS  Google Scholar 

  • Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Clark SG, Chisholm AD, Horvitz HR (1993) Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74(1):43–55

    Article  PubMed  CAS  Google Scholar 

  • Cole RD, Anderson GL, Williams PL (2004) The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol Appl Pharmacol 194:248–256

    Article  PubMed  CAS  Google Scholar 

  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD et al (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279(41):42476–42483

    Article  PubMed  CAS  Google Scholar 

  • Cutter AD, Dey A, Murray RL (2009) Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 26(6):1199–1234

    Article  PubMed  CAS  Google Scholar 

  • Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, caenorhabditis elegans. Free Radic Biol Med 18(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • de Soysa TY, Ulrich A, Friedrich T, Pite D, Compton SL, Ok D et al (2012) Macondo crude oil from the deepwater horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol 10:40

    PubMed  Google Scholar 

  • Dhawan R, Dusenbery DB, Williams PL (1999) Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 58(7):451–462

    Article  PubMed  CAS  Google Scholar 

  • Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P et al (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22(23):3236–3241

    Article  PubMed  CAS  Google Scholar 

  • Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR et al (2007) Regulation of nicotinic receptor trafficking by the transmembrane golgi protein UNC-50. EMBO J 26(20):4313–4323

    Article  PubMed  CAS  Google Scholar 

  • Einhorn LC, Gregerson KA, Oxford GS (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs—whole-cell and single-channel recording. J Neurosci 11(12):3727–3737

    PubMed  CAS  Google Scholar 

  • Elmestikawy S, Glowinski J, Hamon M (1986) Presynaptic dopamine auto receptors control tyrosine-hydroxylase activation in depolarized striatal dopaminergic terminals. J Neurochem 46(1):12–22

    Article  CAS  Google Scholar 

  • Finch BE, Wooten KJ, Faust DR, Smith PN (2012) Embryotoxicity of mixtures of weathered crude oil collected from the Gulf of Mexico and corexit 9500 in mallard ducks (Anas platyrhynchos). Sci Total Environ 426:155–159

    Article  PubMed  CAS  Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J et al (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci Off J Soc Neurosci 17(15):5843–5857

    CAS  Google Scholar 

  • Frank CA, Baum PD, Garriga G (2003) HLH-14 is a C. elegans achaete-scute protein that promotes neurogenesis through asymmetric cell division. Development 130(26):6507–6518

    Article  PubMed  CAS  Google Scholar 

  • Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosys Environ 24(1–3):195–217

    Article  Google Scholar 

  • Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B et al (2006) Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensor neurons. J Neurobiol 66(10):1125–1139

    Article  PubMed  CAS  Google Scholar 

  • Garcia LR, Sternberg PW (2003) Caenorhabditis elegans UNC-103 ERG-like potassium channel regulates contractile behaviors of sex muscles in males before and during mating. J Neurosci Off J Soc Neurosci 23(7):2696–2705

    CAS  Google Scholar 

  • Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M, Jorgensen E et al (2002) The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 21(5):1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Hardaker LA, Singer E, Kerr R, Zhou GT, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49(4):303–313

    Article  PubMed  CAS  Google Scholar 

  • HHS (1995) Agency for toxic substances and disease registry. Toxicological profile for polycyclic aromatic hydrocarbons http://www.atsdr.cdc.gov/toxprofiles/tp69.pdf

  • Höss S, Traunspurger WBA, Markert AMB, Zechmeister HG (2003) Chapter 15 Nematodes. Trace Metals and other Contaminants in the Environment. Elsevier, pp 529–554

  • Huang J, Lemire BD (2009) Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. J Mol Biol 387(3):559–569

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK et al (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Gene Dev 19(19):2278–2283

    Article  PubMed  CAS  Google Scholar 

  • Kalis AK, Murphy MW, Zarkower D (2010) EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 344(2):827–835

    Article  PubMed  CAS  Google Scholar 

  • Khanna N, Cressman CP 3rd, Tatara CP, Williams PL (1997) Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch Environ Contam Toxicol 32(1):110–114

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Poole DS, Waggoner LE, Kempf A, Ramirez DS, Treschow PA et al (2001) Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics 157(4):1599–1610

    PubMed  CAS  Google Scholar 

  • Liao VH, Yu CW (2005) Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18(5):519–528

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR et al (2005) Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 25(29):6745–6754

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR et al (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacol 190(3):269–319

    Article  CAS  Google Scholar 

  • Milinkovitch T, Lucas J, Le Floch S, Thomas-Guyon H, Lefrancois C (2012) Effect of dispersed crude oil exposure upon the aerobic metabolic scope in juvenile golden grey mullet (Liza aurata). Mar Pollut Bull 64(4):865–871

    Article  PubMed  CAS  Google Scholar 

  • Moresco JJ, Koelle MR (2004) Activation of EGL-47, a Galpha(o)-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. J Neurosci 24(39):8522–8530

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (2001) The OLD-1 positive regulator of longevity and stress resistance is under DAF-16 regulation in Caenorhabditis elegans. Curr Biol 11(19):1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33(4):161–168

    PubMed  CAS  Google Scholar 

  • Nicholas HR, Hodgkin J (2009) The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Dev Biol 329(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Reiner DJ, Newton EM, Tian H, Thomas JH (1999) Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature 402(6758):199–203

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR. 1997. Introduction to C. elegans. In: C elegans II, Riddle DL, Blumenthal T, Meyer BJ, Priess JR (Eds) Cold Spring Harbor: NY

  • Roberts JR, Reynolds JS, Thompson JA, Zaccone EJ, Shimko MJ, Goldsmith WT et al (2011) Pulmonary effects after acute inhalation of oil dispersant (COREXIT EC9500A) in rats. J Toxicol Environ Health A 74(21):1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172

    Article  PubMed  CAS  Google Scholar 

  • Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491

    Article  PubMed  Google Scholar 

  • Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P et al (2004) Dopamine modulates the plasticity of mechanosensor responses in Caenorhabditis elegans. EMBO J 23(2):473–482

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Branicky R, Landaverde IO, Hekimi S (2003) Redox regulation of germline and vulval development in Caenorhabditis elegans. Science 302(5651):1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Shteingauz A, Cohen E, Biala Y, Treinin M (2009) The BTB-MATH protein BATH-42 interacts with RIC-3 to regulate maturation of nicotinic acetylcholine receptors. J Cell Sci 122(Pt 6):807–812

    Article  PubMed  CAS  Google Scholar 

  • Sochová I, Hofman J, Holoubek I (2007) Effects of seven organic pollutants on soil nematode Caenorhabditis elegans. Environ Int 33:798–804

    Article  PubMed  Google Scholar 

  • Sriram K, Lin GX, Jefferson AM, Goldsmith WT, Jackson M, McKinney W et al (2011) Neurotoxicity following acute inhalation exposure to the oil dispersant corexit EC9500A. J Toxicol Environ Health A Curr Issue 74(21):1405–1418

    Article  CAS  Google Scholar 

  • Struckhoff EC, Lundquist EA (2003) The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development 130(4):693–704

    Article  PubMed  CAS  Google Scholar 

  • Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM 3rd, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280(29):27013–27021

    Article  PubMed  CAS  Google Scholar 

  • Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Ura K, Kai T, Sakata S, Iguchi T, Arizono K (2002) Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci 48(6):583–586

    Article  CAS  Google Scholar 

  • van der Linden AM, Simmer F, Cuppen E, Plasterk RH (2001) The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158(1):221–235

    PubMed  Google Scholar 

  • Van Scoy AR, Anderson BS, Philips BM, Voorhees J, McCann M, De Haro H et al (2012) NMR-based characterization of the acute metabolic effects of weathered crude and dispersed oil in spawning top smelt and their embryos. Ecotoxicol Environ Saf 78:99–109

    Article  PubMed  Google Scholar 

  • Wang D, Xing X (2008) Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci 20:1132–1137

    Article  CAS  Google Scholar 

  • Wise J, Wise JP Sr (2011) A review of the toxicity of chemical dispersants. Rev Environ Health 26(4):281–300

    Article  PubMed  Google Scholar 

  • Wu J, Duggan A, Chalfie M (2001) Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes Dev 15(6):789–802

    Article  PubMed  CAS  Google Scholar 

  • Yanase S, Ishi N (1999) Cloning of the oxidative stress-responsive genes in Caenorhabditis elegans. J Radiat Res (Tokyo) 40(1):39–47

    Article  CAS  Google Scholar 

  • Yu H, Pretot RF, Burglin TR, Sternberg PW (2003) Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130(21):5217–5227

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS ONE 7(3):e31849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the grant from NSF Rapid Grant BIO IOS# 1058975) and partially by the East Carolina University New Faculty Startup Funds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chen, D., Ennis, A.C. et al. Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans . Arch Toxicol 87, 371–382 (2013). https://doi.org/10.1007/s00204-012-0936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0936-x

Keywords

Navigation