Skip to main content

Advertisement

Log in

Nrf2-mediated redox signaling in arsenic carcinogenesis: a review

  • Letter to the Editor
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Arsenic is a ubiquitous toxic metalloid whose natural leaching from geogenic resources of earths crust into groundwater has become a dreadful health hazard to millions of people across the globe. Arsenic has been documented as a top most potent human carcinogen by Agency of Toxic Substances and Disease Registry. There have been a number of schools of opinions regarding the underlying mechanism of arsenic-induced carcinogenicity, but the theory of oxidative stress generated by arsenic has gained much importance. Imbalance in the cellular redox state and its associated complications have been closely associated with nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic-leucine zipper transcription factor that activates the antioxidant responsive element and electrophilic responsive element, thereby upregulating the expression of a variety of downstream genes. This review has been framed on the lines of differential molecular responses of Nrf2 on arsenic exposure as well as the chemopreventive strategy which may be improvised to regulate Nrf2 in order to combat arsenic-induced oxidative stress and its long-term carcinogenic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abiko Y, Shinkai Y, Sumi D, Kumagai Y (2010) Reduction of arsenic-induced cytotoxicity through Nrf2/HO-1 signaling in HepG2 cells. J Toxicol Sc 35:419–423

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ASTDR) (2012) http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=3. Accessed on 6 May 2012

  • Aono J, Yanagawa T, Itoh K, Li B, Hiroshi Yoshida H, Kumagai Y, Yamamoto M, Ishii T (2003) Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts. Biochem Biophys Res Commun 305:271–277

    Article  PubMed  CAS  Google Scholar 

  • Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272

    Article  PubMed  CAS  Google Scholar 

  • Bates MN, Smith AH, Hopenhayn-Rich C (1992) Arsenic ingestion and internal cancers: a review. Am J Epidemiol 135:462–476

    PubMed  CAS  Google Scholar 

  • Bau DT, Wang TS, Chung CH, Wang AS, Jan KY (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110:753–756

    Article  PubMed  CAS  Google Scholar 

  • Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NFκB and their concerted modulation in cancer pathogenesis and progression. Cancers 2:483–497

    Article  CAS  Google Scholar 

  • Bishayee A, Darvesh AS (2010) Oxidative stress in cancer and neurodegenerative diseases: prevention and treatment by dietary antioxidants. In: Kozyrev D, Slutsky V (eds) Handbook of free radicals: formation, types and effects. Nova Science Publishers, Inc, New York, pp 1–55

    Google Scholar 

  • Bishayee A, Barnes KF, Bhatia D, Darvesh AS, Carroll RT (2010) Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res 3:753–763

    Article  CAS  Google Scholar 

  • Bishayee A, Bhatia D, Thoppil RJ, Darvesh AS, Nevo E, Lansky EP (2011) Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis 32:888–896

    Article  PubMed  CAS  Google Scholar 

  • Biswas J, Sinha D, Mukherjee S, Roy S, Siddiqi M, Roy M (2010a) Curcumin protects DNA damage in a chronically arsenic exposed population of West Bengal. Hum Exp Toxicol 29:513–524

    Article  PubMed  CAS  Google Scholar 

  • Biswas J, Roy S, Mukherjee S, Sinha D, Roy M (2010b) Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pac J Cancer Prev 11:239–247

    PubMed  Google Scholar 

  • Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LR, Cuevas AG, Cornejo L, Cumbal L,Toujaguez R (2011) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ [Epub ahead of print]. PMID: 21959248

  • Chakrabarti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nayak B, Pal A, Sengupta MK, Ahmed S, Hossain A, Basu G, Roychowdhury T, Das D (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53:542–551

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Chandra Mukherjee S, Dhar RK, Biswas BK, Chowdhury UK, Roy S, Sorif S, Selim M, Rahman M, Quamruzzaman Q (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Zhou L, Styblo M, Walton F, Jing Y, Weinberg R, Chen Z, Waxman S (2003) Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Res 63:1853–1859

    PubMed  CAS  Google Scholar 

  • Chu HA, Crawford-Brown DJ (2006) Inorganic arsenic in drinking water and bladder cancer: a meta-analysis for dose-response assessment. Int J Environ Res Public Health 3:316–322

    Article  PubMed  CAS  Google Scholar 

  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  PubMed  CAS  Google Scholar 

  • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges-Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486

    Article  PubMed  CAS  Google Scholar 

  • Darvesh AS, Bishayee A (2012) Modulation of the Nrf2 signaling pathway by chemopreventive dietary phytoconstituents. In: Shankar S, Srivastava R (eds) Nutr, diet and cancer. Springer Science+Business Media B.V, New York, pp 521–540

    Chapter  Google Scholar 

  • Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13:218–228

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18:1779–1791

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W, Li J, Lou H, Wong PK, Zhang DD (2008) Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. Environ Health Persp 116:1154–1161

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress. Part I. Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  • Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257–281

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  PubMed  CAS  Google Scholar 

  • Gurr JR, Yih LH, Samikkannu T, Bau DT, Lin SY, Jan KY (2003) Nitric oxide production by arsenite. Mutat Res 533:173–182

    Article  PubMed  CAS  Google Scholar 

  • Hail N Jr, Cortes M, Drake EN, Spallholz JE (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45:97–110

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, McMahon M (2009) Nrf2 and Keap1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748

    Article  PubMed  CAS  Google Scholar 

  • He X, Ma Q (2010) Critical cysteine residues of Kelch-Like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. J Pharmacol Exp Therap 332:66–75

    Article  CAS  Google Scholar 

  • He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865

    Article  PubMed  CAS  Google Scholar 

  • He X, Chen MG, Lin GX, Ma Q (2006) Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2-Keap1-Cul3 complex and recruiting Nrf2-Maf to the antioxidant response element enhancer. J Biol Chem 281:23620–23631

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Saw CL-L, Yu R, Kong A-NT (2010) Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 13:1679–1698

    Article  PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans, supplement 7: overall evaluations of carcinogenicity: An updating of IARC monographs volumes 1 to 42. http://monographs.iarc.fr/ENG/Monographs/suppl17-19. Accessed on 26 June 2011

  • Integrated Risk Information System (IRIS). http://www.epa.gov/IRIS/. Accessed on 27 July 2011

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Jaiswal AK (2006) Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J Biol Chem 281:12132–12134

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Bloom DA, Jaiswal AK (2005) Nuclear import and export signals in control of Nrf2. J Biol Chem 280:29158–29168

    Article  PubMed  CAS  Google Scholar 

  • Jeong W-S, Jun M, Kong AH-NGT (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8:99–106

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, Huang Z, Chan JY, Zhang DD (2009) Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol Appl Pharmacol 240:8–14

    Article  PubMed  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    PubMed  CAS  Google Scholar 

  • Kang KW, Cho MK, Lee CH, Kim SG (2001) Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element mediated rGSTA2 induction in H4IIE cells. Mol Pharmacol 59:1147–1156

    PubMed  CAS  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning-a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2399–2428

    Article  PubMed  CAS  Google Scholar 

  • Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640

    Article  PubMed  CAS  Google Scholar 

  • Khor TO, Yu S, Kong AN (2008) Dietary cancer chemopreventive agents—targeting inflammation and Nrf2 signaling pathway. Planta Med 74:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Chanpiwat P, Hanh HT, Phan K, Sthiannopkao S (2011) Arsenic geochemistry of groundwater in Southeast Asia. Front Med 5:420–433

    Article  PubMed  Google Scholar 

  • Knobeloch LM, Zierold KM, Anderson HA (2006) Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin’s Fox River Valley. J Health Popul Nutr 24:206–213

    PubMed  Google Scholar 

  • Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells 7:807–820

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26:221–229

    Article  PubMed  CAS  Google Scholar 

  • Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S (2001) Induction of xenobiotic enzymes by the MAPkinase pathway and the antioxidant or electrophile response element (ARE = EpRE). Drug Metab Rev 33:255–271

    Article  PubMed  CAS  Google Scholar 

  • Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262

    Article  PubMed  CAS  Google Scholar 

  • Kwak MK, Knesler TW (2010) Targeting Nrf2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  PubMed  CAS  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Hanson JM, Chu WA, Johnson JA (2001) Phosphatidylinositol 3-kinase, not extracellular signal-related kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J Biol Chem 276:20011–20016

    Article  PubMed  CAS  Google Scholar 

  • Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    Article  PubMed  CAS  Google Scholar 

  • Li W, Yu SW, Kong AN (2006) Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J Biol Chem 281:27251–27263

    Article  PubMed  CAS  Google Scholar 

  • Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Li B, Li X, Zhu B, Zhang X, Wang Y, Xu Y, Wang H, Hou Y, Zheng Q, Sun G (2011) Sodium arsenite induced reactive oxygen species generation, nuclear factor (erythroid-2 related) factor 2 activation, heme oxygenase-1 expression, and glutathione elevation in Chang human hepatocytes. Environ Toxicol. doi:10.1002/tox.20731. PMID: 21809430

  • Mandal BK, Ogra Y, Anzai K, Suzuki KT (2004) Speciation of arsenic in biological samples. Toxicol Appl Pharmacol 198:307–318

    Article  PubMed  CAS  Google Scholar 

  • Manson MM, Gescher A, Hudson EA, Plummer SM, Squires MS, Prigent A (2000) Blocking and suppressing mechanisms of chemoprevention by dietary constituents. Toxicol Lett 112–113:499–505

    Article  PubMed  Google Scholar 

  • Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ, Kligerman AD (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361

    Article  PubMed  CAS  Google Scholar 

  • Massrieh W, Derjuga A, Blank V (2006) Induction of endogenous Nrf2/Small Maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 8:53–59

    Article  PubMed  CAS  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278:21592–21600

    Article  PubMed  CAS  Google Scholar 

  • McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279:31556–31567

    Article  PubMed  CAS  Google Scholar 

  • Mead MN (2005) Arsenic: in search of an antidote to a global poison. Env Health Persp 113:A378–A386

    Article  Google Scholar 

  • Meng D, Wang X, Chang Q, Hitron A, Zhang Z, Xu M, Chen G, Luo J, Jiang B, Fang J, Shi X (2010) Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism. Toxicol Appl Pharmacol 244:291–299

    Article  PubMed  CAS  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition-metals as catalysts of autooxidation reactions. Free Radic Biol Med 8:95–108

    Article  PubMed  CAS  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Doh ST, Chan JY, Kong AN, Cai L (2008) Regulatory potential for concerted modulation of Nrf2- and NFκB I-mediated gene expression in inflammation and carcinogenesis. Br J Cancer 99:2070–2082

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response element: activation by Nrf2 and repression by MafK. J Biol Chem 275:15466–15473

    Article  PubMed  CAS  Google Scholar 

  • Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP (2003) Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 290:234–245

    Article  PubMed  CAS  Google Scholar 

  • Reilly CA, Aust SD (1999) Biological oxidations catalyzed by iron released from ferritin. In: Rhodes C (ed) Toxicology of the human environment: the critical role of free radicals. Taylor and Francis Press, London, pp 155–190

    Google Scholar 

  • Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Sinha D, Mukherjee S, Paul S, Bhattacharya RK (2008) Protective effect of dietary phytochemicals against arsenite induced genotoxicity in mammalian V79 cells. Ind J Exp Biol 46:690–697

    CAS  Google Scholar 

  • Roy M, Sinha D, Mukherjee S, Biswas J (2011) Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India. Eur J Cancer Prev 20:123–131

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A (2006) Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281:14841–14851

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong AN (2004) Regulation of Nrf2 transactivation domain activity: the differential effect of mitogen- activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem 279:23052–23060

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  PubMed  CAS  Google Scholar 

  • Shinkai Y, Sumi D, Fukami I, Ishii T, Kumagai Y (2006) Sulforaphane, an activator of Nrf2, suppresses cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. FEBS Lett 580:1771–1774

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Misra V, Thimmulappa RK, Hannah Lee H, Ames S, Hoque MO, Herman JG, Stephen B, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S (2006) Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:1865–1876

    CAS  Google Scholar 

  • Sinha D, Roy M (2011) Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and repair inhibition in Swiss albino mice. J Environ Pathol Toxicol Oncol 30:311–322

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Roy M, Dey S, Siddiqi M, Bhattacharya RK (2003) Modulation of arsenic induced cytotoxicity by tea. Asian Pac J Cancer Prev 4:233–237

    PubMed  Google Scholar 

  • Sinha D, Roy M, Siddiqi M, Bhattacharya RK (2005a) Modulation of arsenic induced DNA damage by tea as assessed by single cell gel electrophoresis. Int J Cancer Prev 2:145–154

    Google Scholar 

  • Sinha D, Bhattacharya RK, Siddiqi M, Roy M (2005b) Amelioration of sodium arsenite-induced clastogenicity by tea extracts in Chinese hamster V79 cells. J Environ Pathol Toxicol Oncol 24:129–140

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Roy M, Siddiqi M, Bhattacharya RK (2005c) Arsenic-induced micronuclei formation in mammalian cells and its counteraction by tea. J Environ Pathol Toxicol Oncol 24:45–56

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Dey S, Bhattacharya RK, Roy M (2007) In vitro mitigation of arsenic toxicity by tea polyphenols in human lymphocytes. J Environ Pathol Toxicol Oncol 26:207–220

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Mukherjee S, Roy S, Bhattacharya RK, Roy M (2009) Modulation of arsenic induced genotoxicity by curcumin in human lymphocytes. J Environ Chem Ecotoxicol 1:1–11

    CAS  Google Scholar 

  • Sinha D, Roy S, Roy M (2010) Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice. Food Chem Toxicol 48:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Slocum SL, Kensler TW (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85:273–284

    Article  PubMed  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Persp 97:259–267

    Article  CAS  Google Scholar 

  • Sun Z, Chin YE, Zhang DD (2009) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29:2658–2672

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Kojima C, Chignell C, Mason R, Waalkes MP (2011) Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response. Toxicol Appl Pharmacol 255:242–250

    Article  PubMed  CAS  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  • Surh YJ (2008) NF-κB and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr 17:269–272

    PubMed  CAS  Google Scholar 

  • Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588

    PubMed  CAS  Google Scholar 

  • Thoppil RJ, Bhatia D, Barnes KF, Háznagy-Radnai E, Hohmann J, Darvesh AS, Bishayee A (2012) Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr Cancer Drug Targets [Epub ahead of print]. PMID: 22873220

  • Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26:2887–2900

    Article  PubMed  CAS  Google Scholar 

  • Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 102:204–211

    Article  PubMed  CAS  Google Scholar 

  • van Halem D, Bakker SA, Amy GL, van Dijk JC (2009) Arsenic in drinking water: not just a problem for Bangladesh. Drink Water Eng Sci Discuss 2:51–64

    Article  Google Scholar 

  • Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinine oxidoreductase 1 gene. Proc Natl Acad Sci USA 93:14960–14965

    Article  PubMed  CAS  Google Scholar 

  • Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci 101:2040–2045

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Sun Z, Chen W, Eblin KE, Gandolfi JA, Zhang DD (2007) Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol 225:206–213

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (2008) Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1–Cul3 interaction. Toxicol Appl Pharmacol 230:383–389

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 86:879–896

    Article  PubMed  CAS  Google Scholar 

  • Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD (2010) The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules 15:3338–3355

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1993) WHO guidelines for drinking-water quality

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58–64

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Su Y, Zhang M, Sun Z (2012) Opposite effects of arsenic trioxide on the Nrf2 pathway in oral squamous cell carcinoma in vitro and in vivo. Cancer Lett 318:93–98

    Article  PubMed  CAS  Google Scholar 

  • Zhao CR, Gao ZH, Qu XJ (2010) Nrf2–ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 34:523–533

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Hou Y, Zhang Q, Woods CG, Xue P, Fu J, Yarborough K, Guan D, Andersen ME, Pi J (2012) Cross-Regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. Environ Health Perspect 120:583–589

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dona Sinha or Anupam Bishayee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, D., Biswas, J. & Bishayee, A. Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Arch Toxicol 87, 383–396 (2013). https://doi.org/10.1007/s00204-012-0920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0920-5

Keywords

Navigation