Skip to main content
Log in

Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The present study investigated the protective effects of melatonin (MT) against gentamicin (GM)-induced nephrotoxicity and oxidative stress in rats. We also investigated the effects of MT on induction of apoptotic cell death and its potential mechanisms in renal tissues in response to GM treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) MT (15 mg/kg/day), (3) GM (100 mg/kg/day), and (4) GM&MT. GM caused severe nephrotoxicity as evidenced by increased serum blood urea nitrogen and creatinine levels, increased renal tubular cell apoptosis, and increased Bcl2-associated X protein and cleaved caspase-3 protein expression. Additionally, GM treatment caused an increase in levels of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) protein expression in renal tissues. The significant decreases in glutathione content, catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities and the increase in malondialdehyde content indicated that GM-induced tissue injury was mediated through oxidative reactions. In contrast, MT treatment protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by the GM treatment. Histopathological studies confirmed the renoprotective effect of MT. These results indicate that MT prevents nephrotoxicity induced by GM in rats, presumably because it is a potent antioxidant, restores antioxidant enzyme activity, and blocks NF-κB and iNOS activation in rat kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Ali BH (2003) Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research. Food Chem Toxicol 41:1447–1452

    Article  PubMed  CAS  Google Scholar 

  • Andre M, Latado H, Felley-Bosco E (2005) Inducible nitric oxide synthase-dependent stimulation of PKGI and phosphorylation of VASP in human embryonic kidney cells. Biochem Pharmacol 69:595–602

    Article  PubMed  CAS  Google Scholar 

  • Ateşşahin A, Karahan I, Yilmaz S, Çeribasi AO, Princci I (2003) The effects of manganese chloride on gentamicin-induced nephrotoxicity in rats. Pharmacol Res 48:637–642

    Article  PubMed  Google Scholar 

  • Baliga R, Ueda N, Walker PD, Shah SV (1997) Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis 29:465–477

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Karin M (1997) Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory disease. N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM (1998) The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 23:175–184

    Article  PubMed  CAS  Google Scholar 

  • Bettahi I, Pozo D, Osuna C, Reiter RJ, Acuna-Castroviejo D, Guerrero JM (1996) Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res 20:205–210

    Article  PubMed  CAS  Google Scholar 

  • Bonnefont-Rousselot D, Collin F, Jore D, Gardes-Albert M (2011) Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res 50:328–335

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1986) Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer. J Biol Chem 261:1629–1635

    PubMed  CAS  Google Scholar 

  • Christo JS, Rodrigues AM, Mouro MG, Cenedeze MA, Simoões MJ, Schor N, Higa EMS (2011) Nitric oxide (NO) is associated with gentamicin (GENTA) nephrotoxicity and the renal function recovery after suspension of GENTA treatment in rats. Nitric Oxide 24:77–83

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D (2002) A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol 450:67–76

    Article  PubMed  CAS  Google Scholar 

  • El Mouedden M, Laurent G, Mingeot-Leclercq MP, Taper HS, Cumps J, Tulkens PM (2000) Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides. Antimicrob Agents Chemother 44:665–675

    Article  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ghaznavi R, Kadkhodaee M (2007) Comparative effects of selective and non-selective nitric oxide synthase inhibition in gentamicin-induced rat nephrotoxicity. Arch Toxicol 81:453–457

    Article  PubMed  CAS  Google Scholar 

  • Gilad E, Wong HR, Zingarelli B, Virág L, O’Connor M, Salzman AL, Szabó C (1998) Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFkappaB activation. FASEB J 12:685–693

    PubMed  CAS  Google Scholar 

  • Giuliano RA, Paulu GJ, Verpooten GA, Pattyn VM, Pollet DE, Nouwen EJ, Laurent G, Carlier MB, Maldague P, Tulkenes PM, De Broe ME (1984) Recovery of cortical phospholipidosis and necrosis after acute gentamicin loading in rats. Kidney Int 26:838–847

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB, Guthenberg C, Mannervik B, Vander Jagt DL (1984) 2-Propylthiouracil does not replace glutathione for the glutathione transferases. J Biol Chem 259:7409–7410

    PubMed  CAS  Google Scholar 

  • Hara M, Yoshida M, Nishijima H, Yokosuka M, Iigo M, Ohtani-Kaneko R, Shimada A, Hasegawa T, Akama Y, Hirata K (2001) Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res 30:129–138

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin. Endocrine 27:119–130

    Article  PubMed  CAS  Google Scholar 

  • Kone BC (2004) Nitric oxide synthesis in the kidney: isoforms, biosynthesis and functions in health. Semin Nephrol 24:299–315

    Article  PubMed  CAS  Google Scholar 

  • Kumar U, Chen J, Sapoznikhov V, Canteros G, White BH, Sidhu A (2005) Overexpression of inducible nitric oxide synthase in the kidney of the spontaneously hypertensive rat. Clin Exp Hypertens 27:17–31

    Article  PubMed  CAS  Google Scholar 

  • Li N, Karin M (1999) Is NF-κB the sensor of oxidative stress? FASEB J 13:1137–1143

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manikandan R, Beulaja M, Thiagarajan R, Priyadarsini A, Saravanan R, Arumugam M (2011) Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. Eur J Pharmacol 670:578–585

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B (1985) Glutathione peroxidase. Methods Enzymol 113:490–495

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Salgado C, Eleno N, Morales AI, Pérez-Barriocanal F, Arévalo M, López-Novoa JM (2004) Gentamicin treatment induces simultaneous mesangial proliferation and apoptosis in rats. Kidney Int 65:2161–2171

    Article  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063

    PubMed  CAS  Google Scholar 

  • Meki AR, Abdel-Ghaffar SK, El-Gibaly I (2001) Aflatoxin B1 induces apoptosis in rat liver: protective effect of melatonin. Neuroendocrinol Lett 22:417–426

    PubMed  CAS  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant responsive factor. EMBO J 12:2005–2015

    PubMed  CAS  Google Scholar 

  • Mohan N, Sadeghi K, Reiter RJ, Meltz ML (1995) The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int 37:1063–1070

    PubMed  CAS  Google Scholar 

  • Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, Leverve X, López-Novoa JM, El-Mir MY (2010) Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 77:861–869

    Article  PubMed  CAS  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  PubMed  CAS  Google Scholar 

  • Nagai J, Takano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet 19:159–170

    Article  PubMed  CAS  Google Scholar 

  • Nava M, Romero F, Quiroz Y, Parra G, Bonet L, Rodríguez-Iturbe B (2000) Melatonin attenuates acute renal failure and oxidative stress induced by mercuric chloride in rats. Am J Physiol Renal Physiol 279:F910–F918

    PubMed  CAS  Google Scholar 

  • Othman AI, El-Missiry MA, Amer MA, Arafa M (2008) Melatonin controls oxidative stress and modulates iron, ferritin, and transferrin levels in adriamycin treated rats. Life Sci 83:563–568

    Article  PubMed  CAS  Google Scholar 

  • Parlakpinar H, Tasdemir S, Polat A, Bay-Karabulut A, Vardi N, Ucar M, Acet A (2005) Protective role of caffeic acid phenethyl ester (cape) on gentamicin-induced acute renal toxicity in rats. Toxicology 207:169–177

    Article  PubMed  CAS  Google Scholar 

  • Pedraza-Chaverrí J, Barrera D, Maldonado PD, Chirino YI, Macías-Ruvalcaba NA, Medina-Campos ON, Castro L, Salcedo MI, Hernández-Pando R (2004) S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo. BMC Clin Pharmacol 4:5

    Article  PubMed  Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1994) Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:PL455–PL460

    Article  PubMed  CAS  Google Scholar 

  • Ramsammy L, Ling KY, Josepovitz C, Levine R, Kaloyanides GJ (1985) Effect of gentamicin lipid peroxidation in rat renal cortex. Biochem Pharmacol 34:3895–3900

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 939:200–215

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    Article  PubMed  CAS  Google Scholar 

  • Rivas-Cabanero L, Montero A, López-Novoa JM (1995) Increased glomerular nitric oxide synthesis in gentamicin induced renal failure. Eur J Pharmacol 270:119–121

    Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Sehirli AÖ, Altunbas HZ, Ersoy Y, Paskaloglu K, Arbak S, Ayanoglu-Dulger G (2002) Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res 32:231–236

    Article  PubMed  CAS  Google Scholar 

  • Servais H, Van Der Smissen P, Thirion G, Van der Essen G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP (2005) Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol Appl Pharmacol 206:321–333

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC, Yan M, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardelan R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–198

    Article  PubMed  CAS  Google Scholar 

  • Wardle EN (2001) Nuclear factor-κB for the nephrologist. Nephrol Dial Transplant 16:1764–1768

    Article  PubMed  CAS  Google Scholar 

  • Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708

    PubMed  CAS  Google Scholar 

  • Yanagida C, Ito K, Komiya I, Horie T (2004) Protective effect of fosfomycin on gentamicin-induced lipid peroxidation of rat renal tissue. Chem Biol Interact 148:139–147

    Article  PubMed  CAS  Google Scholar 

  • Yang CL, Du XH, Han YX (1995) Renal cortical mitochondria are the source of oxygen free radicals enhanced by gentamicin. Ren Fail 17:21–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Chonnam National University, 2010. This work was also supported by the Grant of the Animal Medical Center, and Chonnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Choon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, IC., Kim, SH., Lee, SM. et al. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Arch Toxicol 86, 1527–1536 (2012). https://doi.org/10.1007/s00204-012-0849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0849-8

Keywords

Navigation