, Volume 176, Issue 4, pp 301-305

In vivo role of adenosine-5′-phosphosulfate reductase in the purple sulfur bacterium Allochromatium vinosum

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Adenosine-5′-phosphosulfate (APS) reductase participates in the oxidation of sulfite to APS in Allochromatium vinosum. Oxidation of sulfite via the APS pathway yields ATP through substrate-level phosphorylation. An alternative enzyme for the oxidation of sulfite to sulfate, sulfite:acceptor oxidoreductase, has also been reported in Ach. vinosum. Oxidation of sulfite through this enzyme does not yield ATP. APS reductase is expressed constitutively in Ach. vinosum, suggesting that it performs an important role in this organism. However, studies carried out with batch cultures of an APS reductase mutant showed little or no differences in growth or in the rates of substrate oxidation when compared to the wild-type, therefore questioning the role of this enzyme. In an attempt to establish whether the ATP gain derived from APS-reductase-mediated oxidation of sulfite is relevant for energy-limited cultures, we compared growth of the wild-type SM50 and the APS-reductase-deficient mutant D3 when grown in continuous culture under different degrees of illumination. Little differences in the specific growth rates of the two strains were observed at light-limiting irradiances, suggesting that the ATP gained during sulfite oxidation through the APS reductase pathway does not constitute a significant energy input. However, at saturating irradiances, wild-type Ach. vinosum grew considerably faster than the mutant. Increasing the irradiance even further resulted in inhibition of the wild-type strain down to the level of the APS reductase mutant. The implications of these results are discussed.

Electronic Publication