Skip to main content
Log in

Mutagenesis and biochemical studies on AuaA confirmed the importance of the two conserved aspartate-rich motifs and suggested difference in the amino acids for substrate binding in membrane-bound prenyltransferases

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

AuaA is a membrane-bound farnesyltransferase from the myxobacterium Stigmatella aurantiaca involved in the biosynthesis of aurachins. Like other known membrane-bound aromatic prenyltransferases, AuaA contains two conserved aspartate-rich motifs. Several amino acids in the first motif NXxxDxxxD were proposed to be responsible for prenyl diphosphate binding via metal ions like Mg2+. Site-directed mutagenesis experiments demonstrated in this study that asparagine, but not the arginine residue in NRxxDxxxD, is important for the enzyme activity of AuaA, differing from the importance of NQ or ND residues in the NQxxDxxxD or NDxxDxxxD motifs observed in some membrane-bound prenyltransferases. The second motif of known membrane-bound prenyltransferases was proposed to be involved in the binding of their aromatic substrates. KDIxDxEGD, also found in AuaA, had been previously speculated to be characteristic for binding of flavonoids or homogenisate. Site-directed mutagenesis experiments with AuaA showed that KDIxDxEGD was critical for the enzyme activity. However, this motif is very likely not specific for flavonoid or homogenisate prenyltransferases, because none of the tested flavonoids was accepted by AuaA or its mutant R53A in the presence of farnesyl, geranyl or dimethylallyl diphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akashi T, Sasaki K, Aoki T et al (2009) Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol 149:683–693

    Article  PubMed  CAS  Google Scholar 

  • Ashby MN, Kutsunai SY, Ackerman S et al (1992) COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. J Biol Chem 267:4128–4136

    PubMed  CAS  Google Scholar 

  • Brandt W, Brauer L, Gunnewich N et al (2009) Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry 70:1758–1775

    Article  PubMed  CAS  Google Scholar 

  • Bräuer L, Brandt W, Schulze D et al (2008) A structural model of the membrane-bound aromatic prenyltransferase UbiA from E. coli. Chembiochem 9:982–992

    Article  PubMed  Google Scholar 

  • Haug-Schifferdecker E, Arican D, Brueckner R et al (2010) A new group of aromatic prenyltransferases in fungi, catalyzing a 2,7-dihydroxynaphthalene dimethylallyltransferase reaction. J Biol Chem 285:16487–16494

    Article  PubMed  CAS  Google Scholar 

  • Heide L (2009) Prenyl transfer to aromatic substrates: genetics and enzymology. Curr Opin Chem Biol 13:171–179

    Article  PubMed  CAS  Google Scholar 

  • Jost M, Zocher G, Tarcz S et al (2010) Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity. J Am Chem Soc 132:17849–17858

    Article  PubMed  CAS  Google Scholar 

  • Kaur J, Bachhawat AK (2009) A modified Western Blot protocol for enhanced sensitivity in the detectionof a membrane protein. Anal Biochem 384:348–349

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435:983–987

    Article  PubMed  CAS  Google Scholar 

  • Leviatan S, Sawada K, Moriyama Y et al (2010) Combinatorial method for overexpression of membrane proteins in Escherichia coli. J Biol Chem 285:23548–23556

    Article  PubMed  CAS  Google Scholar 

  • Li S-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    Article  PubMed  Google Scholar 

  • Melzer M, Heide L (1994) Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. Biochim Biophys Acta 1212:93–102

    PubMed  CAS  Google Scholar 

  • Metzger U, Schall C, Zocher G et al (2009) The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci USA 106:14309–14314

    Article  PubMed  CAS  Google Scholar 

  • Metzger U, Keller S, Stevenson CE et al (2010) Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. J Mol Biol 404:611–626

    Article  PubMed  CAS  Google Scholar 

  • Ohara K, Muroya A, Fukushima N et al (2009) Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J 421:231–241

    Article  PubMed  CAS  Google Scholar 

  • Pojer F, Wemakor E, Kammerer B et al (2003) CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc Natl Acad Sci USA 100:2316–2321

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Mito K, Ohara K et al (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol 146:1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Tsurumaru Y, Yamamoto H et al (2011) Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens. J Biol Chem 286:24125–24134

    Article  PubMed  CAS  Google Scholar 

  • Stec E, Steffan N, Kremer A et al (2008) Two Lysine residues are responsible for the enzymatic activities of indole prenyltransferases from fungi. Chembiochem 9:2055–2058

    Article  PubMed  CAS  Google Scholar 

  • Stec E, Pistorius D, Muller R et al (2011) AuaA, a membrane-bound farnesyltransferase from Stigmatella aurantiaca, catalyzes the prenylation of 2-methyl-4-hydroxyquinoline in the biosynthesis of aurachins. Chembiochem 12:1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Steffan N, Grundmann A, Yin W-B et al (2009) Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem 16:218–231

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K, Kunihisa M, Fujisaki T et al (2002) Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a key enzyme in shikonin biosynthesis. J Biol Chem 277:6240–6246

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li S-M (2011) Prenylation of flavonoids by using a dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus. Chembiochem 12:2280–2283

    Article  CAS  Google Scholar 

  • Yu X, Xie X, Li S-M (2011) Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases. Appl Microbiol Biotechnol 92:737–748

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (to S.-M. Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stec, E., Li, SM. Mutagenesis and biochemical studies on AuaA confirmed the importance of the two conserved aspartate-rich motifs and suggested difference in the amino acids for substrate binding in membrane-bound prenyltransferases. Arch Microbiol 194, 589–595 (2012). https://doi.org/10.1007/s00203-012-0795-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0795-0

Keywords

Navigation