Skip to main content
Log in

Ammonium and attachment of Rhodopirellula baltica

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A dimorphic life cycle has been described for the planctomycete Rhodopirellula baltica SH1T, with juvenile motile, free-swimming cells and adult sessile, attached-living cells. However, attachment as a response to environmental factors was not investigated. We studied the response of R. baltica to nitrogen limitation. In batch cultures, ammonium limitation coincided with a dominance of free-swimming cells and a low number of aggregates. Flow cytometry revealed a quantitative shift with increasing ammonium availability, from single cells towards attached cells in large aggregates. During growth of R. baltica on glucose and ammonium in chemostats, an ammonium addition caused a macroscopic change of the growth behaviour, from homogeneous growth in the liquid phase to a biofilm on the borosilicate glass wall of the chemostat vessel. Thus, an ammonium limitation—a carbon to nitrogen supply ratio of 30:1—sustained free-living growth without aggregate formation. A sudden increase in ammonium supply induced sessile growth of R. baltica. These observations reveal a response of Rhodopirellula baltica cells to ammonium: they abandon the free-swimming life, attach to particles and form biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade SLA, Einsle O (2007) The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol 24:357–365

    Article  PubMed  CAS  Google Scholar 

  • Armitage J (2006) Bacterial behavior. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 1, 3rd edn. Springer, New York, pp 102–139

    Chapter  Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68

    Article  CAS  Google Scholar 

  • Dworkin M (2006) Prokaryotic life cycles. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryote, vol 1, 3rd edn. Springer, New York, pp 140–166

    Chapter  Google Scholar 

  • Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Micro Ecol 10:15–27

    Article  Google Scholar 

  • Gade D, Stührmann T, Reinhardt R, Rabus R (2005) Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ Microbiol 7:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  Google Scholar 

  • Hall PO, Aller RC (1992) Rapid, small-volume, flow-injection analysis for CO2 and NH4 + in marine and fresh-waters. Limnol Ocean 37:1113–1119

    Article  CAS  Google Scholar 

  • Hünken M, Harder J, Kirst GO (2008) Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol 10:519–526

    Article  PubMed  Google Scholar 

  • Ihssen J, Egli T (2004) Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 150:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Lyman J, Fleming RH (1940) Composition of sea water. J Mar Res 3:134–146

    CAS  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

    PubMed  CAS  Google Scholar 

  • Marshall KC (2006) Planktonic versus sessile life of prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 3–15

    Chapter  Google Scholar 

  • Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, de Beer D, Dubilier N, Amann R (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29:333–348

    Article  PubMed  Google Scholar 

  • Ng FMW, Dawes EA (1973) Chemostat studies on regulation of glucose-metabolism in Pseudomonas aeruginosa by citrate. Biochem J 132:129–140

    PubMed  CAS  Google Scholar 

  • Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Meth 4:303–306

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–222

    CAS  Google Scholar 

  • Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp, Pirellula spp, and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145

    Google Scholar 

  • Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov as Blastopirellula marina comb. nov and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ (2009) Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ Microbiol 11:1632–1645

    Article  PubMed  CAS  Google Scholar 

  • Staley JT (1968) Prostecomicrobium and Ancalomicrobium—new prostecate freshwater bacteria. J Bacteriol 95:1921–1942

    PubMed  CAS  Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) General Microbiology, 5th edn. Macmillan, London

    Google Scholar 

  • Stürmeyer H, Overmann J, Babenzien HD, Cypionka H (1998) Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64:1890–1894

    PubMed  Google Scholar 

  • Tezuka Y (1990) Bacterial regeneration of ammonium and phosphate as affected by the carbon—nitrogen—phosphorus ratio of organic substrates. Microb Ecol 19:227–238

    Article  CAS  Google Scholar 

  • Tremblay PL, Hallenbeck PC (2009) Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Mol Microbiol 71:12–22

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann N, Harder J (2009) An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microb Meth 77:276–284

    Article  CAS  Google Scholar 

  • Winkelmann N, Jaekel U, Meyer C, Serrano W, Rachel R, Rosselló-Mora R, Harder J (2010) Determination of the diversity of Rhodopirellula isolates from European Seas applying a multilocus sequence analysis. Appl Environ Microbiol 76:776–785

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov sp nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daniel Blessing and Jörg Wulf for technical assistance. This study was funded by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Harder.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, C.S., Langhammer, P., Fuchs, B.M. et al. Ammonium and attachment of Rhodopirellula baltica . Arch Microbiol 193, 365–372 (2011). https://doi.org/10.1007/s00203-011-0681-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0681-1

Keywords

Navigation