Skip to main content
Log in

A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A psychrotrophic bacterium producing a cold-adapted β-galactosidase upon growth at low temperatures was classified as Arthrobacter sp. 20B. A genomic DNA library of strain 20B introduced into Escherichia coli TOP10F′ and screening on X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside)-containing agar plates led to the isolation of β-galactosidase gene. The β-galactosidase gene (bgaS) encoding a protein of 1,053 amino acids, with a calculated molecular mass of 113,695 kDa. Analysis of the amino acid sequence of BgaS protein, deduced from the bgaS ORF, suggested that it is a member of the glycosyl hydrolase family 2. A native cold-adapted β-galactosidase was purified to homogeneity and characterized. It is a homotetrameric enzyme, each subunit being approximately 116 kDa polypeptide as deduced from native and SDS–PAGE, respectively. The β-galactosidase was optimally active at pH 6.0–8.0 and 25°C. P-nitrophenyl-β-d-galactopyranoside (PNPG) is its preferred substrate (three times higher activity than for ONPG—o-nitrophenyl-β-d-galactopyranoside). The Arthrobacter sp. 20B β-galactosidase is activated by thiol compounds (53% rise in activity in the presence of 10 mM 2-mercaptoethanol), some metal ions (activity increased by 50% for Na+, K+ and by 11% for Mn2+) and inactivated by pCMB (4-chloro-mercuribenzoic acid) and heavy metal ions (Pb2+, Zn2+, Cu2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ORF:

Open reading frame

X-Gal:

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

IPTG:

Isopropyl-β-d-thiogalactopyranoside

PNPG:

p-Nitrophenyl-β-d-galactopyranoside

ONPG:

o-Nitrophenyl-β-d-galactopyranoside

pCMB:

4-Chloro-mercuribenzoic acid

PABTG:

p-Amino-benzyl-1-thio-β-d-galactopyranoside

PMSF:

Phenylmethylsulphonyl fluoride

References

  • Adams MWW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662–668

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Becker VE, Evans HJ (1969) The influence of monovalent cations and hydrostatic pressure on β-galactosidase activity. Biochim Biophys Acta 191:95–104

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Chessa JP, Petrescu I, Bentahir M, Van Beeuman J, Gerday CH (2000) Purification physico-chemical characterization and sequence of a heat labile metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274

    CAS  PubMed  Google Scholar 

  • Cieśliński H, Kur J, Białkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from Antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34

    Article  PubMed  Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185(18):5473–5482

    Article  CAS  PubMed  Google Scholar 

  • Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol 65:5443–5450

    CAS  PubMed  Google Scholar 

  • Davail S, Feller G, Narinx E, Gerday CH (1994) Cold-adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA. J Biol Chem 269:17448–17453

    CAS  PubMed  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Methods and application to human serum protein. Ann N Y Acad Sci 2:366–382

    Google Scholar 

  • Feller G, Gerday CH (1997) Psychrophilic enzymes: molecular basis of cold adaptation. CMLS, Cell Mol Life Sci 53:830–841

    Article  CAS  Google Scholar 

  • Feller G, Gerday CH (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature 1:200–208

    CAS  Google Scholar 

  • Feller G, Thiry JL, Arpigny JL, Mergeay M, Gerday C (1990) Lipases from psychrophilic Antarctic organisms. FEMS Microbiol Lett 66:239–244

    Article  CAS  Google Scholar 

  • Fernandes S, Geueke B, Delgado O, Coleman J, Haiti-Kaul R (2002) β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  CAS  PubMed  Google Scholar 

  • Goldstein A, Lampen O (1975) Beta-d-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42:504–511

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    CAS  Google Scholar 

  • Gutshall KR, Trimbur DE, Kasmir JJ, Brenchley JE (1995) Analysis of a novel gene and β-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 177:1981–1988

    CAS  PubMed  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François JM, Baise E, Feller G, Gerday CH (2001) Cold adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx JC, Sonan G, Zeng Y, Feller G (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98(5):317–330

    CAS  PubMed  Google Scholar 

  • Hung MN, Lee BH (2002) Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity Bifidobacterium infantis HL 96. Appl Microbiol Biotechnol 58:439–445

    Article  CAS  PubMed  Google Scholar 

  • Jaeger S, Schmuck R, Sobek H (2000) Molecular cloning, sequencing, and expression of the heat-labile uracil—DNA glycosylase from a marine psychrophilic bacterium, strain BMTU33469. Extremophiles 4:115–122

    Article  CAS  PubMed  Google Scholar 

  • Jahandideh S, Asadabadi EB, Abdolmaleki P, Jahandideh M, Hoseini S (2007) Protein psychrophilicity: role of residual structural properties in adaptation of proteins to low temperatures. J Theor Biol 248:721–726

    Article  CAS  PubMed  Google Scholar 

  • Karasová P, Spiwok V, Malá S, Králová B, Russell N (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47

    Google Scholar 

  • Karasová-Lipovová P, Strnad H, Spiwok V, Malá S, Králová B, Russell NJ (2003) The clonning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb Technol 33:836–844

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leahy M, Vaughan P, Fanning S, Sheehan D (2001) Purification and some characteristics of a recombinant dimeric Rhizobium meliloti β-galactosidase expressed in Escherichia coli. Enzyme Microb Technol 28:682–688

    Article  CAS  PubMed  Google Scholar 

  • Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Appl Environ Microbiol 60:12–18

    CAS  PubMed  Google Scholar 

  • Margesin R, Palma N, Knauseder F, Schinner F (1992) Purification and characterization of an alkaline protease produced by a psychrotrophic Bacillus sp. J Biotechnol 24:203–206

    Article  CAS  Google Scholar 

  • Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K, Tamiya E (1998) Properties of cold-active protease from psychrophilic Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675

    Article  CAS  PubMed  Google Scholar 

  • Nagy Z, Kiss T, Szentirmai A, Biros S (2001) β-galactosidase of Penicillum chrysogenum: production, purification, and characterization of the enzyme. Protein Expr Purif 21:24–29

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006a) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72(4):720–725

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N (2006b) Cold-active acid β-galactosidase activity of isolated psychrophilic—basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  CAS  PubMed  Google Scholar 

  • Neville MC, Ling GN (1967) Synergistic activation of β-galactosidase by Na+ and Cs+. Arch Biochem Biophys 118:596–610

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Bowman J, Sanderson K, Mansuco CN, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collection, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  CAS  PubMed  Google Scholar 

  • Ornstein L (1964) Disc electrophoresis. I. Background and theory. Ann N Y Acad Sci 121:321–349

    Article  CAS  PubMed  Google Scholar 

  • Petegem FV, Collins T, Meuwis MA, Ch Gerday, Feller G, Beeumen JV (2003) The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. J Biol Chem 278:7531–7539

    Article  PubMed  Google Scholar 

  • Ray MK, Uma Devi K, Seshu Kumar G, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    CAS  PubMed  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42-β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Caviccholi R (2006) Cold adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Tkaczuk KL, Bujnicki JM, Bialkowska A, Bielecki S, Turkiewicz M, Cieśliński H, Kur J (2005) Molecular modelling of psychrophilic β-galactosidase. Biocat Biotransf 23:201–209

    Article  CAS  Google Scholar 

  • Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase. Appl Environ Microbiol 60:4544–4552

    CAS  PubMed  Google Scholar 

  • Turkiewicz M, Kur J, Białkowska A, Cieślinski H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol Eng 20:317–324

    Article  CAS  PubMed  Google Scholar 

  • Vallenfels K, Weil R (1972) Beta-galactosidase. In: Boyer PD (ed) The enzymes, vol 7, 3rd edn. Academic Press, New York, pp 617–663

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feler G, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Sonan G, Gerday C (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Monika Białkowska.

Additional information

Communicated by Erko Stackebrandt.

A. M. Białkowska and H. Cieśliński contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Białkowska, A.M., Cieśliński, H., Nowakowska, K.M. et al. A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191, 825–835 (2009). https://doi.org/10.1007/s00203-009-0509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0509-4

Keywords

Navigation