Skip to main content
Log in

Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains’ position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anagnostidis K (1989) Geitlerinema, a new genus of oscillatorian cyanophytes. Plant Syst Evol 164:33–46

    Article  Google Scholar 

  • Anagnostidis K, Komarek J (1985) Modern approach to the classification system of cyanophytes, Introduction. Arch Hydrobiol Suppl, Algol Stud 38/39:291–302

    Google Scholar 

  • Anagnostidis K, Komarek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Algol Stud 50–53:327–472

    Google Scholar 

  • Baker PD, Steffensen DA, Humpage AR, Nicholson BC, Falconer IR, Lanthois B, Fergusson KM, Saint CP (2001) Preliminary evidence of toxicity associated with the bentic cyanobacterium Phormidium in South Australia. Environ Toxicol 16:506–511

    Article  PubMed  CAS  Google Scholar 

  • Bourrelly P (1970) Les algues d’eau douce, vol III. N. Boubée& Cie, Paris

  • Boyer SL, Johansen JR, Flechtner VR (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Brehm U, Krumbein WE, Palinska KA (2003) Microbial spheres: a novel cyanobacterial–diatom symbiosis. Naturwiss 90:136–140

    PubMed  CAS  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Castenholz RW, Waterbury JB (1989) Group I. Cyanobacteria. In: Holt JG (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams& Wilkins, Baltimore, pp 1710–1727

  • Castenholz RW, Rippka R, Herdman M, Wilmotte A (2001) Subsection III. (Formerly Oscillatoriales Elenkin 1934). In: Garrity GM (ed) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 539–562

    Google Scholar 

  • Ceschi-Berrini C, DeAppolonia F, Valle LD, Komárek J, Andreoli C (2004) Morphological and molecular characterization of a thermophilic cyanobacterium (Oscillatoriales) from Euganean thermal springs (Padua, Italy). Arch Hydrobiol Suppl Algol Stud 113:73–85

    Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Drouet F (1968) Revision of the classification of the Oscillatoriaceae. Monogr Acad Nat Sci Phila 115:261–281

    Google Scholar 

  • Elenkin AA (1938, 1949) Sinezelenye vodorosli SSSR Monographia algarum cyanophycearum aquidulcium et terrestrium in finibus URSS inventarum. Pars spec. 1, 2, Akad. Nauk SSSR, Moscow-Leningrad, pp 1908

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    PubMed  CAS  Google Scholar 

  • Frémy P (1934) Cyanophycées des côtes d’Éurope. Mem de la soc Nation des Sci Nat et Math de Cherbourg 41:1–234

    Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed  CAS  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, pp 1–1196

    Google Scholar 

  • Gomont M (1892) Monographie des Oscillarièes (Nostocaceae homocystées). Ann Sci Nat Ser Bot 15:265–368

    Google Scholar 

  • Henson BJ, Hesselbrock SM, Watson LE, Barnum SR (2004) Molecular phylogeny of the heterocystous cyanobacteria subsections IV and V based on nifD. Int J Syst Evol Microbiol 54:493–497

    Article  PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Watanabe MM, Sugiyama J, Yokota A (2001) Evidence for polyphyletic origin of the members f the orders Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82

    Article  PubMed  CAS  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S-23S rRNA spacer sequences of cyanobacteria. Microbiol 146:1275–1286

    CAS  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2002) rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiol 148: 481–496

    CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota, part 2. Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süusswasserflora von Mitteleuropa Band 19/2. Gustav Fischer, Jena

  • Laamanen MJ, Forsström L, Sivonen K (2002) Diversity of Aphanizomenon flos-aque (Cyanobacterium) populations along a Baltic Sea salinity gradient. Appl Environ Mcrobiol 68:5296–5303

    Article  CAS  Google Scholar 

  • Laloui W, Palinska KA, Rippka R, Partensky F, Tandeau de Marsac M, Herdman M, Iteman I (2002) Genotyping of axenic and non-axenic isolates of the genus Prochlorococcus and the “marine Synechococcus clade" by size, sequence analyses or RFLP of the Internal Transcribed Spacer (ITS) of the ribosomal operon. Microbiol 148:453–455

    CAS  Google Scholar 

  • Lee WJ, Bae KS (2001) The phylogenetic relationship of several oscillatorian cyanobacteria, forming bloom at Daecheong reservoirs, based on partial 16S rRNA gene sequences. J Microbiol Biotech 1:504–507

    Article  Google Scholar 

  • Litvaitis MK (2002) A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468:135–145

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

    PubMed  CAS  Google Scholar 

  • Mullins T, Britschgi TB, Krest RL, Giovannoni SJ (1995) genetic comparisons reveal the same unknown bacterial lineages in Atlantc and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  • Nadeau T-L, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (Cyanobacteria). J Phycol 37:650–654

    Article  Google Scholar 

  • Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny on toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environm Microbiol 61:3875–3883

    CAS  Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902

    Article  PubMed  Google Scholar 

  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the Rules of the Bacteriological Code. Int J Syst Evol Microbiol 51:873–879

    PubMed  CAS  Google Scholar 

  • Palinska KA, Liesack W, Rhiel E, Krumbein WE (1996) Phenotype variability of identical genotypes: the need for a combined cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166:224–233

    Article  PubMed  CAS  Google Scholar 

  • Palinska KA, Thomasius CF, Marquardt J, Golubic S (2006) Phylogenetic evaluation of cyanobacteria preserved as historic herbarium exsiccata. Int J Syst Evol Microbiol 56:2253–2263

    Article  PubMed  CAS  Google Scholar 

  • Rajaniemi R, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komarek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871

    PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR,. Johnson Z, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Schönhuber W, Zarda B, Eix S, Rippka R, Herdman M, Ludwig W, Amann R (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    PubMed  Google Scholar 

  • Stackebrandt E (2001) Unifying phylogeny and phenotypic diversity. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 583–624

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stam WT (1980) Relationships between a number of filamentous blue-green algal strains (Cyanophyceae) revealed by DNA–DNA hybridization. Archiv Hydrobiologie Suppl 56:351–374

    CAS  Google Scholar 

  • Stam WT, Venema G (1977) The use of DNA–DNA hybridization for determination of the relationship between some blue-green algae (Cyanophyceae). Acta Bot Neerl 26:327–342

    CAS  Google Scholar 

  • Starmach K (1966) Cyanophyta—Sinice. Flora Slodkowodna Polski. PAN, Warszawa

    Google Scholar 

  • Surosz W, Palinska KA (2004) Effects of heavy metals stress on cyanobacterium Anabaena flos-aquae. Arch Environ Cont Toxicol 48:40–48

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91

    CAS  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Witt R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Teneva I, Dzhambazov B, Mladenov R, Schirmer K (2005) Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J Phycol 41:188–194

    Article  CAS  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. In: Bhattacharya D (ed) The origin of the algae and their plastids. Springer, Berlin Heidelberg New York

  • Umezaki I (1961) The marine blue-green algae of Japan. Mem of the College of Agriculture, Kyoto University (Fisheries Series No. 8) 83:1–149

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 10:569–570

    CAS  Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 1–25

    Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Garrity GM (ed) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 487–493

    Google Scholar 

  • Wilmotte A, Stam W, Demoulin V (1997) Taxonomic study of marine oscillatorian strains (Cyanophyceae, Cyanobacteria) with narrow trichomes. II. DNA–DNA hybridization studies and taxonomic conclusions. Arch Hydrobiol Suppl Algol Stud 87:11–28

    Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG, grant PA 842/1–3. We thank Sean Turner for the critical comments and help in improving the English of an early version of the manuscript. We wish also to thank Dörte Boll and Beate Reinhardt who helped by transmission electron microscopy and pigment isolation and anonymous reviewer for extensive help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Palinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquardt, J., Palinska, K.A. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187, 397–413 (2007). https://doi.org/10.1007/s00203-006-0204-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0204-7

Keywords

Navigation