Skip to main content
Log in

Factors influencing methicillin resistance in staphylococci

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract.

Methicillin resistance in staphylococci is due to an acquired penicillin-binding protein, PBP2′ (PBP2a). This additional PBP, encoded by mecA, confers an intrinsic resistance to all β-lactams and their derivatives. Resistance levels in methicillin-resistant Staphylococcus aureus (MRSA) depend on efficient PBP2′ production and are modulated by chromosomal factors. Depending on the genetic background of the strain that acquired mecA, resistance levels range from phenotypically susceptible to highly resistant. Characteristic for most MRSA is the heterogeneous expression of resistance, which is due to the segregation of a more highly resistant subpopulation upon challenge with methicillin. Maximal expression of resistance by PBP2′ requires the efficient and correct synthesis of the peptidoglycan precursor. Genes involved in cell-wall precursor formation and turnover, regulation, transport, and signal transduction may determine the level of resistance that is expressed. At this stage, however, there is no information available on the functionality or efficacy of such factors in clinical isolates in relation to methicillin resistance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger-Bächi, B., Rohrer, S. Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178, 165–171 (2002). https://doi.org/10.1007/s00203-002-0436-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0436-0

Navigation