Applicable Algebra in Engineering, Communication and Computing

, Volume 13, Issue 3, pp 233–255

Asymptotics of Quantum Mechanical Atom-Ion Systems

Authors

  • T. C. Scott
    • Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany (email: {tony.scott, dirk.andrae}@uni-bielefeld.de)
  • M. Aubert-Frécon
    • LASIM, CNRS et Université Lyon 1, Campus de La Doua, Bâtiment Alfred Kastler, F-69100 Villeurbanne Cédex, France (email: frecon@lasim.univ-lyon1.fr)
  • D. Andrae
    • Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany (email: {tony.scott, dirk.andrae}@uni-bielefeld.de)

DOI: 10.1007/s002000200100

Cite this article as:
Scott, T., Aubert-Frécon, M. & Andrae, D. AAECC (2002) 13: 233. doi:10.1007/s002000200100

Abstract.

 We have analyzed and reduced a general (quantum-mechanical) atom-ion diatomic exchange energy formulation into fundamental mathematical forms, namely a particular class of single and double definite integrals. These are of importance in the charge exchange of molecular processes in atmospheric physics and eventually of interest to matters related to climate. These integrals have been evaluated in terms of asymptotic expansions, with precise schemes for their numerical evaluation. Dividends for algebraic aspects concerning identities of hypergeometric functions as well as summation techniques for divergent series are also discussed in this context.

Key words:  Symbolic Integration, Numerical Integration, Molecular Physics, Special Functions and Sums, Asymptotic Series-->

Copyright information

© Springer-Verlag Berlin Heidelberg 2002