Applicable Algebra in Engineering, Communication and Computing

, Volume 10, Issue 3, pp 189–202

On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods

Authors

  • Harald Niederreiter
    • Institute of Discrete Mathematics, Austrian Academy of Sciences, Sonnenfelsgasse 19, A-1010 Vienna, Austria (e-mail: niederreiter@oeaw.ac.at)
  • Igor E. Shparlinski
    • Department of Computing, Macquarie University, NSW 2109, Australia (e-mail: igor@comp.mq.edu.au)

DOI: 10.1007/s002000050124

Cite this article as:
Niederreiter, H. & Shparlinski, I. AAECC (2000) 10: 189. doi:10.1007/s002000050124

Abstract.

Inversive methods provide an attractive alternative to linear methods for pseudorandom number and vector generation. We present the first nontrivial results on the distribution of sequences of digital inversive pseudorandom numbers and inversive pseudorandom vectors in parts of the period. The proofs are based on a new bound for certain exponential sums over finite fields.

Keywords: Digital inversive pseudorandom numbers, Inversive pseudorandom vectors, Discrepancy, Exponential sums.
Download to read the full article text

Copyright information

© Springer-Verlag Berlin Heidelberg 2000