Skip to main content

Advertisement

Log in

The calcium-sensing receptor in bone metabolism: from bench to bedside and back

  • Review Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The calcium-sensing receptor (CaSR), a key player in the maintenance of calcium homeostasis, can influence bone modeling and remodeling by directly acting on bone cells, as demonstrated by in vivo and in vitro evidence. The modulation of CaSR signaling can play a role in bone anabolism.

Introduction

The calcium-sensing receptor (CaSR) is a key player in the maintenance of calcium homeostasis through the regulation of PTH secretion and calcium homeostasis, thus indirectly influencing bone metabolism. In addition to this role, in vitro and in vivo evidence points to direct effects of CaSR in bone modeling and remodeling. In addition, the activation of the CaSR is one of the anabolic mechanisms implicated in the action of strontium ranelate, to reduce fracture risk.

Methods

This review is based upon the acquisition of data from a PubMed enquiry using the terms “calcium sensing receptor,” “CaSR” AND “bone remodeling,” “bone modeling,” “bone turnover,” “osteoblast,” “osteoclast,” “osteocyte,” “chondrocyte,” “bone marrow,” “calcilytics,” “calcimimetics,” “strontium,” “osteoporosis,” “skeletal homeostasis,” and “bone metabolism.”

Results

A fully functional CaSR is expressed in osteoblasts and osteoclasts, so that these cells are able to sense changes in the extracellular calcium and as a result modulate their behavior. CaSR agonists (calcimimetics) or antagonists (calcilytics) have the potential to indirectly influence skeletal homeostasis through the modulation of PTH secretion by the parathyroid glands. The bone anabolic effect of strontium ranelate, a divalent cation used as a treatment for postmenopausal and male osteoporosis, might be explained, at least in part, by the activation of CaSR in bone cells.

Conclusions

Calcium released in the bone microenvironment during remodeling is a major factor in regulating bone cells. Osteoblast and osteoclast proliferation, differentiation, and apoptosis are influenced by local extracellular calcium concentration. Thus, the calcium-sensing properties of skeletal cells can be exploited in order to modulate bone turnover and can explain the bone anabolic effects of agents developed and employed to revert osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    CAS  PubMed  Google Scholar 

  2. Brown EM (2000) Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 1:307–315

    CAS  PubMed  Google Scholar 

  3. Egbuna OI, Brown EM (2008) Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 22:129–148

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Loupy A, Ramakrishnan SK, Wootla B et al (2012) PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 122:3355–3367

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown EM, Chattopadhyay N, Yano S (2004) Calcium-sensing receptors in bone cells. J Musculoskelet Neuronal Interact 4:412–413

    CAS  PubMed  Google Scholar 

  6. Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22:701–722

    PubMed  Google Scholar 

  7. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576

    CAS  PubMed  Google Scholar 

  9. Ward DT, Riccardi D (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol 165:35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Chakravarti B, Chattopadhyay N, Brown EM (2012) Signaling through the extracellular calcium-sensing receptor (CaSR). Adv Exp Med Biol 740:103–142

    CAS  PubMed  Google Scholar 

  11. Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255

    CAS  PubMed  Google Scholar 

  12. Parfitt AM (1989) Plasma calcium control at quiescent bone surfaces: a new approach to the homeostatic function of bone lining cells. Bone 10:87–88

    CAS  PubMed  Google Scholar 

  13. Ye CP, Yamaguchi T, Chattopadhyay N et al (2000) Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 27:21–27

    CAS  PubMed  Google Scholar 

  14. Huang Z, Cheng SL, Slatopolsky E (2001) Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 276:21351–21358

    CAS  PubMed  Google Scholar 

  15. Dvorak MM, Siddiqua A, Ward DT et al (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Berger CE, Rathod H, Gillespie JI et al (2001) Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res 16:2092–2102

    CAS  PubMed  Google Scholar 

  17. Raisz LG, Niemann I (1969) Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85:446–452

    CAS  PubMed  Google Scholar 

  18. Brown EM, Lian JB (2008) New insights in bone biology: unmasking skeletal effects of the extracellular calcium-sensing receptor. Sci Signal 1(35):pe40. doi:10.1126/scisignal.135pe40

    PubMed  Google Scholar 

  19. House MG, Kohlmeier L, Chattopadhyay N et al (1997) Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res 12:1959–1970

    CAS  PubMed  Google Scholar 

  20. Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM (1998) Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells. Endocrinology 139:3561–3568

    CAS  PubMed  Google Scholar 

  21. Pi M, Hinson TK, Quarles LD (1999) Failure to detect the extracellular calcium-sensing receptor (CasR) in human osteoblast cell lines. J Bone Miner Res 14:1310–1319

    CAS  PubMed  Google Scholar 

  22. Yamaguchi T, Kifor O, Chattopadhyay N, Brown EM (1998) Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem Biophys Res Commun 243:753–757

    CAS  PubMed  Google Scholar 

  23. Yamaguchi T, Chattopadhyay N, Kifor O et al (1998) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 13:1530–1538

    CAS  PubMed  Google Scholar 

  24. Yamaguchi T, Chattopadhyay N, Kifor O et al (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280:C382–C393

    CAS  PubMed  Google Scholar 

  25. Yamaguchi T, Olozak I, Chattopadhyay N et al (1998) Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes. Biochem Biophys Res Commun 246:501–506

    CAS  PubMed  Google Scholar 

  26. Kameda T, Mano H, Yamada Y et al (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422

    CAS  PubMed  Google Scholar 

  27. Chang W, Tu C, Chen TH et al (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140:5883–5893

    CAS  PubMed  Google Scholar 

  28. Kamioka H, Miki Y, Sumitani K et al (1995) Extracellular calcium causes the release of calcium from intracellular stores in chick osteocytes. Biochem Biophys Res Commun 212:692–696

    CAS  PubMed  Google Scholar 

  29. Godwin SL, Soltoff SP (1997) Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J Biol Chem 272:11307–11312

    CAS  PubMed  Google Scholar 

  30. Nakade O, Takahashi K, Takuma T et al (2001) Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab 19:13–19

    CAS  PubMed  Google Scholar 

  31. Yamauchi M, Yamaguchi T, Kaji H et al (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616

    CAS  PubMed  Google Scholar 

  32. Deyama A, Deyama Y, Matsumoto A et al (1999) A low calcium environment enhances AP-1 transcription factor-mediated gene expression in the development of osteoblastic MC3T3-E1 cells. Miner Electrolyte Metab 25:147–160

    CAS  PubMed  Google Scholar 

  33. Godwin SL, Soltoff SP (2002) Calcium-sensing receptor-mediated activation of phospholipase C-gamma1 is downstream of phospholipase C-beta and protein kinase C in MC3T3-E1 osteoblasts. Bone 30:559–566

    CAS  PubMed  Google Scholar 

  34. Chattopadhyay N, Yano S, Tfelt-Hansen J et al (2004) Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145:3451–3462

    CAS  PubMed  Google Scholar 

  35. Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hu F, Pan L, Zhang K et al (2014) Elevation of extracellular Ca2+ induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts. PLoS One 9:e107217

    PubMed Central  PubMed  Google Scholar 

  37. Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718

    CAS  PubMed  Google Scholar 

  38. Bennett BD, Alvarez U, Hruska KA (2001) Receptor-operated osteoclast calcium sensing. Endocrinology 142:1968–1974

    CAS  PubMed  Google Scholar 

  39. Kanatani M, Sugimoto T, Kanzawa M et al (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148

    CAS  PubMed  Google Scholar 

  40. Lorget F, Kamel S, Mentaverri R et al (2000) High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun 268:899–903

    CAS  PubMed  Google Scholar 

  41. Takeyama S, Yoshimura Y, Shirai Y et al (2000) Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor. Biochem Biophys Res Commun 276:524–529

    CAS  PubMed  Google Scholar 

  42. Mentaverri R, Yano S, Chattopadhyay N et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:2562–2564

    CAS  PubMed  Google Scholar 

  43. Boudot C, Saidak Z, Boulanouar AK et al (2010) Implication of the calcium sensing receptor and the phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 46:1416–1423

    CAS  PubMed  Google Scholar 

  44. Bonen DK, Schmid TM (1991) Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 115:1171–1178

    CAS  PubMed  Google Scholar 

  45. Jacenko O, Tuan RS (1995) Chondrogenic potential of chick embryonic calvaria: I. Low calcium permits cartilage differentiation. Dev Dyn 202:13–26

    CAS  PubMed  Google Scholar 

  46. Wang D, Canaff L, Davidson D et al (2001) Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. J Biol Chem 276:33995–34005

    CAS  PubMed  Google Scholar 

  47. Chang W, Tu C, Pratt S et al (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474

    CAS  PubMed  Google Scholar 

  48. Wu S, Palese T, Mishra OP et al (2004) Effects of Ca2+ sensing receptor activation in the growth plate. FASEB J 18:143–145

    CAS  PubMed  Google Scholar 

  49. Ho C, Conner DA, Pollak MR et al (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11:389–394

    CAS  PubMed  Google Scholar 

  50. Garner SC, Pi M, Tu Q, Quarles LD (2001) Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142:3996–4005

    CAS  PubMed  Google Scholar 

  51. Tu Q, Pi M, Karsenty G et al (2003) Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 111:1029–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kos CH, Karaplis AC, Peng JB et al (2003) The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111:1021–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu J, Lv F, Sun W et al (2011) The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet 7:e1002294

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Oda Y, Tu CL, Pillai S, Bikle DD (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344–23352

    CAS  PubMed  Google Scholar 

  55. Rodriguez L, Tu C, Cheng Z et al (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146:5294–5303

    CAS  PubMed  Google Scholar 

  56. Hough TA, Bogani D, Cheeseman MT et al (2004) Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci U S A 101:13566–13571

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Dvorak MM, Chen TH, Orwoll B et al (2007) Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology 148:3156–3163

    CAS  PubMed  Google Scholar 

  58. Chang W, Dvorak M, Shoback D (2010) Assessing constitutive activity of extracellular calcium-sensing receptors in vitro and in bone. Methods Enzymol 484:253–266

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Chang W, Tu C, Chen TH et al (2008) The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal 1(35):ra1. doi:10.1126/scisignal.1159945

    PubMed Central  PubMed  Google Scholar 

  60. Liu F, Woitge HW, Braut A et al (2004) Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 48:645–653

    CAS  PubMed  Google Scholar 

  61. Dvorak-Ewell MM, Chen TH, Liang N et al (2011) Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res 26:2935–2947

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Richard C, Huo R, Samadfam R et al (2010) The calcium-sensing receptor and 25-hydroxyvitamin D-1alpha-hydroxylase interact to modulate skeletal growth and bone turnover. J Bone Miner Res 25:1627–1636

    CAS  PubMed  Google Scholar 

  63. Sun W, Sun W, Liu J et al (2010) Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 137:985–992

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Shu L, Ji J, Zhu Q et al (2011) The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J Bone Miner Res 26:1057–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Xue Y, Xiao Y, Liu J et al (2012) The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab 302:E841–E851

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Blair HC, Schlesinger PH, Huang CL, Zaidi M (2007) Calcium signalling and calcium transport in bone disease. Subcell Biochem 45:539–562

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Zaidi M, Shankar VS, Tunwell R et al (1995) A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 96:1582–1590

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Tu Q, Pi M, Quarles LD (2003) Calcyclin mediates serum response element (SRE) activation by an osteoblastic extracellular cation-sensing mechanism. J Bone Miner Res 18:1825–1833

    CAS  PubMed  Google Scholar 

  69. Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19:862–869

    CAS  PubMed  Google Scholar 

  70. Pi M, Faber P, Ekema G et al (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171:1129–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Pi M, Chen L, Huang MZ et al (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858

    PubMed Central  PubMed  Google Scholar 

  73. Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123:2421–2433

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wellendorph P, Johansen LD, Jensen AA et al (2009) No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol 42:215–223

    CAS  PubMed  Google Scholar 

  75. Barradas AM, Fernandes HA, Groen N et al (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33:3205–3215

    CAS  PubMed  Google Scholar 

  76. Khoshniat S, Bourgine A, Julien M et al (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48:894–902

    CAS  PubMed  Google Scholar 

  77. Law WM Jr, Wahner HW, Heath H 3rd (1984) Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric hypercalcemia). Mayo Clin Proc 59:811–815

    PubMed  Google Scholar 

  78. Kristiansen JH, Rødbro P, Christiansen C et al (1987) Familial hypocalciuric hypercalcaemia. III: bone mineral metabolism. Clin Endocrinol (Oxf) 26:713–716

    CAS  Google Scholar 

  79. Abugassa S, Nordenström J, Järhult J (1992) Bone mineral density in patients with familial hypocalciuric hypercalcaemia (FHH). Eur J Surg 158:397–402

    CAS  PubMed  Google Scholar 

  80. Christensen SE, Nissen PH, Vestergaard P et al (2009) Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin Endocrinol (Oxf) 71:798–807

    Google Scholar 

  81. Theman TA, Collins MT, Dempster DW et al (2009) PTH(1-34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res 24:964–973

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Jakobsen NF, Rolighed L, Moser E et al (2014) Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study. Calcif Tissue Int 95:141–152

    CAS  PubMed  Google Scholar 

  83. Nemeth EF, Shoback D (2013) Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract Res Clin Endocrinol Metab 27:373–384

    CAS  PubMed  Google Scholar 

  84. Cianferotti L, D’Asta F, Brandi ML (2013) A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis 5:127–139

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Leach K, Conigrave AD, Sexton PM, Christopoulos A (2015) Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends Pharmacol Sci 36:215–225

    CAS  PubMed  Google Scholar 

  86. Nemeth EF, Delmar EG, Heaton WL et al (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 299:323–331

    CAS  PubMed  Google Scholar 

  87. Rubin MR, Bilezikian JP (2005) Parathyroid hormone as an anabolic skeletal therapy. Drugs 65:2481–2498

    CAS  PubMed  Google Scholar 

  88. Toulis KA, Anastasilakis AD, Polyzos SA, Makras P (2011) Targeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis. Hormones (Athens) 10:174–195

    Google Scholar 

  89. Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297

    CAS  PubMed  Google Scholar 

  90. Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2011) The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 96:2441–2449

    CAS  PubMed  Google Scholar 

  91. Fitzpatrick LA, Smith PL, McBride TA et al (2011) Ronacaleret, a calcium-sensing receptor antagonist, has no significant effect on radial fracture healing time: results of a randomized, double-blinded, placebo-controlled Phase II clinical trial. Bone 49:845–852

    CAS  PubMed  Google Scholar 

  92. Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2012) Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res 27:255–262

    CAS  PubMed  Google Scholar 

  93. Caltabiano S, Dollery CT, Hossain M et al (2013) Characterization of the effect of chronic administration of a calcium-sensing receptor antagonist, ronacaleret, on renal calcium excretion and serum calcium in postmenopausal women. Bone 56:154–162

    CAS  PubMed  Google Scholar 

  94. Dempster DW, Müller R, Zhou H et al (2007) Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41:19–24

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Fitzpatrick LA, Wooddell M, Dabrowski CE et al (2014) Bone mineral density changes following discontinuation of ronacaleret treatment: off-treatment extension of a randomized, dose-finding phase II trial. Bone 67:104–108

    CAS  PubMed  Google Scholar 

  96. Shinagawa Y, Inoue T, Katsushima T et al (2010) Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett 2:238–242

    PubMed Central  PubMed  Google Scholar 

  97. Kimura S, Nakagawa T, Matsuo Y et al (2011) JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats. Eur J Pharmacol 668:331–336

    CAS  PubMed  Google Scholar 

  98. Fukumoto S, Nakamura T, Nishizawa Y et al (2009) Randomized, single‐blinded placebo‐controlled study of a novel calcilytic, JTT‐305, in patients with postmenopausal osteoporosis. J Bone Miner Res 24(Suppl 1):S40

    Google Scholar 

  99. Halse J, Greenspan S, Cosman F et al (2014) A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab 99(11):E2207–E2215

    CAS  PubMed  Google Scholar 

  100. John MR, Widler L, Gamse R et al (2011) ATF936, a novel oral calcilytic, increases bone mineral density in rats and transiently releases parathyroid hormone in humans. Bone 49:233–241

    CAS  PubMed  Google Scholar 

  101. John MR, Harfst E, Loeffler J et al (2014) AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women. Bone 64:204–210

    CAS  PubMed  Google Scholar 

  102. Widler L (2011) Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem 3:535–547

    CAS  PubMed  Google Scholar 

  103. Letz S, Rus R, Haag C et al (2010) Novel activating mutations of the calcium-sensing receptor: the calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J Clin Endocrinol Metab 95:E229–E233

    CAS  PubMed  Google Scholar 

  104. Park SY, Mun HC, Eom YS et al (2013) Identification and characterization of D410E, a novel mutation in the loop 3 domain of CASR, in autosomal dominant hypocalcemia and a therapeutic approach using a novel calcilytic, AXT914. Clin Endocrinol (Oxf) 78:687–693

    CAS  Google Scholar 

  105. Nemeth EF, Steffey ME, Hammerland LG et al (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A 95:4040–4045

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Brown EM (2010) Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol 80:297–307

    CAS  PubMed  Google Scholar 

  107. Peacock M, Bilezikian JP, Klassen PS et al (2005) Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 90:135–141

    CAS  PubMed  Google Scholar 

  108. Peacock M, Bolognese MA, Borofsky M et al (2009) Cinacalcet treatment of primary hyperparathyroidism: biochemical and bone densitometric outcomes in a five-year study. J Clin Endocrinol Metab 94:4860–4867

    CAS  PubMed  Google Scholar 

  109. Strippoli GF, Tong A, Palmer SC et al (2006) Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 4:CD006254

    PubMed  Google Scholar 

  110. Nemeth EF (2010) Calcimimetics and calcilytics in the treatment of chronic kidney disease-mineral bone disorder. In: Olgaard K, Salusky IB, Silver J (eds) The spectrum of mineral and bone disorders in chronic kidney disease, 2nd edn. Oxford University Press, Oxford, pp 443–461

    Google Scholar 

  111. Behets GJ, Spasovski G, Sterling LR et al (2014) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. doi:10.1038/ki.2014.349

    PubMed Central  PubMed  Google Scholar 

  112. Reginster JY, Neuprez A, Dardenne N et al (2014) Efficacy and safety of currently marketed anti-osteoporosis medications. Best Pract Res Clin Endocrinol Metab 28:809–834

    CAS  PubMed  Google Scholar 

  113. Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15

    PubMed  Google Scholar 

  114. Baron R, Tsouderos Y (2002) In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450:11–17

    CAS  PubMed  Google Scholar 

  115. Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    CAS  PubMed  Google Scholar 

  116. Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    CAS  PubMed  Google Scholar 

  117. Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    CAS  PubMed  Google Scholar 

  118. Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136:216–226

    CAS  PubMed  Google Scholar 

  119. Caudrillier A, Hurtel-Lemaire AS, Wattel A et al (2010) Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576

    CAS  PubMed  Google Scholar 

  120. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284:575–584

    CAS  PubMed  Google Scholar 

  121. Fromigué O, Haÿ E, Barbara A et al (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199

    PubMed  Google Scholar 

  122. Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

Luisella Cianferotti, Ana Rita Gomes, Sergio Fabbri, and Annalisa Tanini declare that they have no conflict of interest. Maria Luisa Brandi declares that she has conflict of interest as consultant and recipient of grants from Amgen, Eli Lilly, MSD, Novartis, Roche, and Servier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Brandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cianferotti, L., Gomes, A.R., Fabbri, S. et al. The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos Int 26, 2055–2071 (2015). https://doi.org/10.1007/s00198-015-3203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3203-1

Keywords

Navigation