Skip to main content

Advertisement

Log in

Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Spinal cord injury (SCI) has been associated with a marked bone loss after injury and a consequent increased risk of osteoporosis. The evaluation of bone mineral density shortly after SCI is a simple and effective method for predicting the development of osteoporosis during the first year after SCI.

Introduction

Spinal cord injury (SCI) has been associated with a marked bone loss after injury and a consequent increased risk of osteoporosis and fractures. The aim of this study was to analyze the factors associated with osteoporosis development short-term after SCI.

Methods

We included patients with complete recent SCI (<6 months) evaluating bone turnover markers (P1NP, bone ALP, and sCTx), 25-OH-vitaminD (25OHD) levels, and lumbar and femoral BMD (Lunar, Prodigy) at baseline, 6 and 12 months after SCI. The risk factors for osteoporosis analyzed included the following: age, gender, BMI, toxic habits, bone turnover markers, 25OHD levels, lumbar and femoral BMD, level, severity and type of SCI, and days-since-injury. Osteoporosis was defined according to WHO criteria.

Results

Thirty-five patients aged 35 ± 16 years were included, and 52 % developed osteoporosis during the 12-month follow-up. These latter patients had lower BMD values at femur and lumbar spine and higher bone turnover markers at baseline. On multivariate analysis, the principal factors related to osteoporosis development were as follows: total femur BMD <1 g/cm2 (RR, 3.61; 95 % CI 1.30–10.06, p = 0.002) and lumbar BMD <1.2 g/cm2 at baseline (0.97 probability of osteoporosis with both parameters under these values). Increased risk for osteoporosis was also associated with increased baseline values of bone ALP (>14 ng/mL) (RR 2.40; 95 % CI 1.10–5.23, p = 0.041) and P1NP (>140 ng/mL) (RR 3.08; 95 % CI 1.10–8.57, p = 0.017).

Conclusions

The evaluation of BMD at the lumbar spine and femur short-term after SCI is a simple, effective method for predicting the development of osteoporosis during the first year after SCI. Our results also indicate the need to evaluate and treat these patients shortly after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SCI:

Spinal cord injury

BMD:

Bone mineral density

ASIA:

American Spinal Cord Injury Association

BMI:

Body mass index

25OHD:

25 Hydroxyvitamin D

PTH:

Parathyroid hormone

Bone ALP:

Bone alkaline phosphatase

P1NP:

Propeptide amino-terminal of type I procollagen

sCTx:

Serum carboxy-terminal telopeptide of type I collagen

AUC:

Area under the ROC curve

RR:

Relative risk

CI:

Confidence interval

p :

p Value

SD:

Standard deviation

OP:

Osteoporosis

References

  1. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  2. Gifre L, Vidal J, Carrasco J, Filella X, Ruiz-Gaspà S, Muxi A, Portell E, Monegal A, Guañabens N, Peris P (2014) Effect of recent spinal cord injury on Wnt signaling antagonists (sclerostin and Dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res. doi:10.1002/jbmr.2423

    Google Scholar 

  3. Pelletier CA, Dumont FS, Leblond J, Noreau L, Giangregorio L, Craven BC (2014) Self-report of one-year fracture incidence and osteoporosis prevalence in a community cohort of Canadians with spinal cord injury. Top Spinal Cord Inj Rehabil 20:302–309

    Article  PubMed  Google Scholar 

  4. Hammond ER, Metcalf HM, McDonald JW, Sadowsky CL (2014) Bone mass in individuals with chronic spinal cord injury: associations with activity-based therapy, neurologic and functional status, a retrospective study. Arch Phys Med Rehabil 95:2342–2349

    Article  PubMed  Google Scholar 

  5. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39:208–214

    Article  CAS  PubMed  Google Scholar 

  6. Alavizadeh SA, Mohajeri-Tehrani MR, Rostamian A, Aghaei Meybodi HR, Qorbani M, Keshtkar AA, Panahi SS, Rahdari F, Khashayar P (2014) Prevalence and associated factors of T-score discordance between different sites in Iranian patients with spinal cord injury. Spinal Cord 52:322–326

    Article  CAS  PubMed  Google Scholar 

  7. Shojaei H, Soroush MR, Modirian E (2006) Spinal cord injury-induced osteoporosis in veterans. J Spinal Disord Tech 19:114–117

    Article  PubMed  Google Scholar 

  8. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369

    Article  PubMed  Google Scholar 

  9. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32

    Article  CAS  PubMed  Google Scholar 

  11. Garland DE, Adkins RH, Stewart CA (2008) Five-year longitudinal bone evaluations in individuals with chronic complete spinal cord injury. J Spinal Cord Med 31:543–550

    PubMed Central  PubMed  Google Scholar 

  12. Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, Jones L, Kirshblum S, Marino R, Mulcahey MJ, Reeves R, Scelza WM, Schmidt-Read M, Stein A (2010) _2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 33:346–352

    PubMed Central  PubMed  Google Scholar 

  13. (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

  14. Skaltsa K, Jover L, Carrasco JL (2010) Estimation of the diagnostic threshold accounting for decision costs and sampling uncertainty. Biom J 52:676–697

    Article  PubMed  Google Scholar 

  15. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zäch G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  16. Biering-Sørensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335

    Article  PubMed  Google Scholar 

  17. Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489–500

    PubMed Central  PubMed  Google Scholar 

  18. Maïmoun L, Couret I, Mariano-Goulart D, Dupuy AM, Micallef JP, Peruchon E, Ohanna F, Cristol JP, Rossi M, Leroux JL (2005) Changes in osteoprotegerin /RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 76:404–411

    Article  PubMed  Google Scholar 

  19. Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22:271–279

    Article  CAS  PubMed  Google Scholar 

  20. Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, McWhinney B, Hickman PE (1998) Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 83:415–422

    CAS  PubMed  Google Scholar 

  21. Reiter AL, Volk A, Vollmar J, Fromm B, Gerner HJ (2007) Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury. Eur Spine J 16:771–776

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM (2013) The clinical utility of bone marker measurements in osteoporosis. J Transl Med 11:201

    Article  PubMed Central  PubMed  Google Scholar 

  23. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    Article  CAS  PubMed  Google Scholar 

  24. Walsh JS, Henriksen DB (2010) Feeding and bone. Arch Biochem Biophys 503:11–19

    Article  CAS  PubMed  Google Scholar 

  25. Gottschalck IB, Jeppesen PB, Holst JJ, Henriksen DB (2008) Reduction in bone resorption by exogenous glucagon-like peptide-2 administration requires an intact gastrointestinal tract. Scand J Gastroenterol 43:929–937

    Article  CAS  PubMed  Google Scholar 

  26. Pan Y, Liu B, Li R, Zhang Z, Lu L (2014) Bowel dysfunction in spinal cord injury: current perspectives. Cell Biochem Biophys 69:385–388

    Article  CAS  PubMed  Google Scholar 

  27. Tong M, Qualls-Creekmore E, Browning KN, Travagli RA, Holmes GM (2011) Experimental spinal cord injury in rats diminishes vagally-mediated gastric responses to cholecystokinin-8 s. Neurogastroenterol Motil 23:e69–e79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Javidan AN, Sabour H, Latifi S, Shidfar F, Vafa MR, Heshmat R, Razavi HE, Larijani B, Meybodi HA (2014) Evaluation of bone mineral loss in patients with chronic traumatic spinal cord injury in Iran. J Spinal Cord Med 37:744–750

    Article  PubMed  Google Scholar 

  29. Fattal C, Mariano-Goulart D, Thomas E, Rouays-Mabit H, Verollet C, Maimoun L (2011) Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education. Arch Phys Med Rehabil 92:59–67

    Article  PubMed  Google Scholar 

  30. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33:674–677

    Article  CAS  PubMed  Google Scholar 

  31. Szollar SM, Martin EM, Parthemore JG, Sartoris DJ, Deftos LJ (1997) Demineralization in tetraplegic and paraplegic man over time. Spinal Cord 35:223–228

    Article  CAS  PubMed  Google Scholar 

  32. Demirel G, Yilmaz H, Paker N, Onel S (1998) Osteoporosis after spinal cord injury. Spinal Cord 36:822–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from Fundació La Marató de TV3. We thank Sara Pérez-Jaume for her help in the data analysis.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gifre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gifre, L., Vidal, J., Carrasco, J.L. et al. Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study. Osteoporos Int 26, 2273–2280 (2015). https://doi.org/10.1007/s00198-015-3150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3150-x

Keywords

Navigation