Skip to main content

Advertisement

Log in

Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The ability of combined step aerobic- and circuit-training to prevent bone loss after breast cancer treatments was related to skeletal site and patients’ menopausal status. Among premenopausal breast cancer survivors, a 12-month exercise intervention completely prevented bone loss at the femoral neck, whereas no exercise effect was seen at lumbar spine or at neither site in postmenopausal women.

Introduction

The primary objective of this randomised clinical trial was to determine the preventive effect of supervised weight-bearing jumping exercises and circuit training on bone loss among breast cancer patients.

Methods

Of 573 breast cancer survivors aged 35–68 years randomly allocated into exercise or control group after adjuvant treatments, 498 (87%) were included in the final analysis. The 12-month exercise intervention comprised weekly supervised step aerobic- and circuit-exercises and similar home training. Bone mineral density (BMD) at lumbar spine and femoral neck were measured by dual-energy X-ray absorptiometry. Physical performance was assessed by 2-km walking and figure-8 running tests, and the amount of physical activity was estimated in metabolic equivalent-hours/week.

Results

In premenopausal women, bone loss at the femoral neck was prevented by exercise, the mean BMD changes being −0.2% among the trainees vs. −1.4% among the controls (p = 0.01). Lumbar bone loss could not be prevented (−1.9% vs. −2.2%). In postmenopausal women, no significant exercise-effect on BMD was found either at the lumbar spine (−1.6% vs. −2.1%) or femoral neck (−1.1% vs. −1.1%).

Conclusions

This 12-month aerobic jumping and circuit training intervention completely prevented femoral neck bone loss in premenopausal breast cancer patients, whereas no effect on BMD was seen in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen Z, Maricic M, Bassford TL et al (2005) Fracture risk among breast cancer survivors: results from the Women’s Health Initiative Observational Study. Arch Intern Med 165:552–558

    Article  PubMed  Google Scholar 

  2. Kanis JA, McCloskey EV, Powles T, Paterson AH, Ashley S, Spector T (1999) A high incidence of vertebral fracture in women with breast cancer. Br J Cancer 79:1179–1181

    Article  PubMed  CAS  Google Scholar 

  3. Saarto T, Blomqvist C, Välimäki M, Mäkelä P, Sarna S, Elomaa I (1997) Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 15:1341–1347

    PubMed  CAS  Google Scholar 

  4. Saarto T, Vehmanen L, Blomqvist C, Elomaa I (2008) Ten-year follow-up of 3 years of oral adjuvant clodronate therapy shows significant prevention of osteoporosis in early-stage breast cancer. J Clin Oncol 26:4289–4295

    Article  PubMed  CAS  Google Scholar 

  5. Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19:3306–3311

    PubMed  CAS  Google Scholar 

  6. Vehmanen L, Saarto T, Blomqvist C, Mäkelä P, Välimäki M, Elomaa I (2001) Long-term impact of chemotherapy-induced ovarian failure on bone mineral density (BMD) in premenopausal breast cancer patients. The effect of adjuvant clodronate treatment. Eur J Cancer 37:2373–2378

    Article  PubMed  CAS  Google Scholar 

  7. Coleman RE, Banks LM, Girgis SI et al (2007) Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol 8:119–127

    Article  PubMed  CAS  Google Scholar 

  8. Lester J, Dodwell D, McCloskey E, Coleman R (2005) The causes and treatment of bone loss associated with carcinoma of the breast. Cancer Treat Rev 31:115–142

    Article  PubMed  Google Scholar 

  9. Lonning PE, Geisler J, Krag LE et al (2005) Effects of exemestane administered for 2 years versus placebo on bone mineral density, bone biomarkers, and plasma lipids in patients with surgically resected early breast cancer. J Clin Oncol 23:5126–5137

    Article  PubMed  Google Scholar 

  10. Perez EA, Josse RG, Pritchard KI et al (2006) Effect of letrozole versus placebo on bone mineral density in women with primary breast cancer completing 5 or more years of adjuvant tamoxifen: a companion study to NCIC CTG MA.17. J Clin Oncol 24:3629–3635

    Article  PubMed  CAS  Google Scholar 

  11. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9:1–12

    Article  PubMed  CAS  Google Scholar 

  12. Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47

    Article  PubMed  Google Scholar 

  13. Karinkanta S, Piirtola M, Sievanen H, Uusi-Rasi K, Kannus P (2010) Physical therapy approaches to reduce fall and fracture risk among older adults. Nat Rev Endocrinol 6:396–407

    Article  PubMed  Google Scholar 

  14. Waltman NL, Twiss JJ, Ott CD et al (2010) The effect of weight training on bone mineral density and bone turnover in postmenopausal breast cancer survivors with bone loss: a 24-month randomized controlled trial. Osteoporos Int 21:1361–1369

    Article  PubMed  CAS  Google Scholar 

  15. Winters-Stone KM, Schwartz A, Nail LM (2010) A review of exercise interventions to improve bone health in adult cancer survivors. J Cancer Surviv 4:187–201

    Article  PubMed  Google Scholar 

  16. Irwin ML, Alvarez-Reeves M, Cadmus L et al (2009) Exercise improves body fat, lean mass, and bone mass in breast cancer survivors. Obesity (Silver Spring) 17:1534–1541

    Article  Google Scholar 

  17. Schwartz AL, Winters-Stone K, Gallucci B (2007) Exercise effects on bone mineral density in women with breast cancer receiving adjuvant chemotherapy. Oncol Nurs Forum 34:627–633

    Article  PubMed  Google Scholar 

  18. Penttinen H, Nikander R, Blomqvist C, Luoto R, Saarto T (2009) Recruitment of breast cancer survivors into a 12-month supervised exercise intervention is feasible. Contemp Clin Trials 30:457–463

    Article  PubMed  Google Scholar 

  19. Rosendahl M, Ahlgren J, Andersen J et al (2009) The risk of amenorrhoea after adjuvant chemotherapy for early stage breast cancer is related to inter-individual variations in chemotherapy-induced leukocyte nadir in young patients: data from the randomised SBG 2000–1 study. Eur J Cancer 45:3198–204

    Article  PubMed  CAS  Google Scholar 

  20. Joensuu H, Kellokumpu-Lehtinen PL, Huovinen R et al (2009) Adjuvant capecitabine in combination with docetaxel and cyclophosphamide plus epirubicin for breast cancer: an open-label, randomised controlled trial. Lancet Oncol 10:1145–1151

    Article  PubMed  CAS  Google Scholar 

  21. Nikander R, Sievanen H, Ojala K, Oivanen T, Kellokumpu-Lehtinen PL, Saarto T (2007) Effect of a vigorous aerobic regimen on physical performance in breast cancer patients—a randomized controlled pilot trial. Acta Oncol 46:181–186

    Article  PubMed  Google Scholar 

  22. Vainionpaa A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463

    Article  PubMed  CAS  Google Scholar 

  23. Weeks BK, The BBR (2008) BPAQ, a bone-specific physical activity assessment instrument. Osteoporos Int 19:1567–1577

    Article  PubMed  CAS  Google Scholar 

  24. Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–S504

    Article  PubMed  CAS  Google Scholar 

  25. Baranowski T, Smith M, Thompson WO, Baranowski J, Hebert D, de Moor C (1999) Intraindividual variability and reliability in a 7-day exercise record. Med Sci Sports Exerc 31:1619–1622

    Article  PubMed  CAS  Google Scholar 

  26. Oja P, Laukkanen R, Pasanen M, Tyry T, Vuori I (1991) A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. Int J Sports Med 12:356–362

    Article  PubMed  CAS  Google Scholar 

  27. Tegner Y, Lysholm J, Lysholm M, Gillquist J (1986) A performance test to monitor rehabilitation and evaluate anterior cruciate ligament injuries. Am J Sports Med 14:156–159

    Article  PubMed  CAS  Google Scholar 

  28. Vartiainen MV, Rinne MB, Lehto TM, Pasanen ME, Sarajuuri JM, Alaranta HT (2006) The test-retests reliability of motor performance measures after traumatic brain injury. Adv Physiother 8:50–59

    Article  Google Scholar 

  29. Covey MK, Smith DL, Berry JK, Hacker ED (2008) Importance of cross-calibration when replacing DXA scanners: QDR4500W and Discovery Wi. J Nurs Meas 16:155–170

    Article  PubMed  Google Scholar 

  30. Fan B, Lewiecki EM, Sherman M et al (2008) Improved precision with Hologic Apex software. Osteoporos Int 19:1597–1602

    Article  PubMed  CAS  Google Scholar 

  31. Vehmanen L, Elomaa I, Blomqvist C, Saarto T (2006) Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol 24:675–680

    Article  PubMed  CAS  Google Scholar 

  32. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  33. Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I (1993) Bone mineral density of female athletes in different sports. Bone Miner 23:1–14

    Article  PubMed  CAS  Google Scholar 

  34. Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882

    Article  PubMed  CAS  Google Scholar 

  35. Uusi-Rasi K, Kannus P, Cheng S et al (2003) Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone 33:132–143

    Article  PubMed  CAS  Google Scholar 

  36. Heinonen A, Kannus P, Sievanen H et al (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  37. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13:1805–1813

    Article  PubMed  CAS  Google Scholar 

  38. Sugiyama T, Yamaguchi A, Kawai S (2002) Effects of skeletal loading on bone mass and compensation mechanism in bone: a new insight into the “mechanostat” theory. J Bone Miner Metab 20:196–200

    Article  PubMed  Google Scholar 

  39. Goto S, Shigeta H, Hyakutake S, Yamagata M (1996) Comparison between menopause-related changes in bone mineral density of the lumbar spine and the proximal femur in Japanese female athletes: a long-term longitudinal study using dual-energy X-Ray absorptiometry. Calcif Tissue Int 59:461–465

    PubMed  CAS  Google Scholar 

  40. Turner CH (1998) Thre rules for bone adaption to mechanical stimuli. Bone 23:399–407

    Article  PubMed  CAS  Google Scholar 

  41. Currey JD (2003) How well are bones designed to resist fracture? J Bone Miner Res 18:591–598

    Article  PubMed  Google Scholar 

  42. Jarvinen TL, Sievanen H, Jokihaara J, Einhorn TA (2005) Revival of bone strength: the bottom line. J Bone Miner Res 20:717–720

    Article  PubMed  Google Scholar 

  43. Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269:E438–E442

    PubMed  CAS  Google Scholar 

  44. Cadmus LA, Salovey P, Yu H, Chung G, Kasl S, Irwin ML (2009) Exercise and quality of life during and after treatment for breast cancer: results of two randomized controlled trials. Psychooncology 18:343–352

    Article  PubMed  Google Scholar 

  45. Courneya KS, Segal RJ, Mackey JR et al (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25:4396–4404

    Article  PubMed  Google Scholar 

  46. Markes M, Brockow T, Resch KL (2006) Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev CD005001

  47. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS (2006) Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ 175:34–41

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study has been financially supported by the Finnish Cancer Institute, the Finnish Cancer Foundation, the Academy of Finland, the Social Insurance Institution of Finland, The Finnish Ministry of Education, Finska Läkaresällskapet, the special government grant for health science research, the Helander Foundation, the Paulo Foundation, Finnish Cultural Foundation and Medical Fund of the Pirkanmaa Hospital District. Finnish Astra-Zeneca sponsored step benches for the study. The study is sponsored by the Finnish Breast Cancer group.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saarto.

Additional information

All authors have contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarto, T., Sievänen, H., Kellokumpu-Lehtinen, P. et al. Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial. Osteoporos Int 23, 1601–1612 (2012). https://doi.org/10.1007/s00198-011-1761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1761-4

Keywords

Navigation