, Volume 19, Issue 6, pp 793-800
Date: 30 Oct 2007

Comparative effects of 17β-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Summary

This study assessed the effect of estradiol, raloxifene and genistein on the preservation of bone 3D-microarchitecture and volumetric bone mineral density (vBMD) in the ovariectomized mouse model. Our results indicated that raloxifene was more effective in preserving bone ovariectomized-induced changes, the advantage being concentrated in both bone microarchitecture and vBMD.

Introduction

This study assessed the effect of different estrogen receptor (ER) agonists on the preservation of bone 3D-microarchitecture and volumetric bone mineral density (vBMD) in the ovariectomized (OVX) mouse model.

Methods

Twelve-week-old female C57BL/6 mice were randomly assigned to one of five groups: (1) SHAM-operated + vehicle; (2) OVX + vehicle; (3) OVX + 17β-estradiol (5 μg/kg); (4) OVX + raloxifene (1 mg/kg); (5) OVX + genistein (25 mg/kg), during 4-weeks. Bone microarchitecture and trabecular, cortical and total vBMD of distal femur were imaged by ex vivo microcomputed tomography (micro-CT).

Results

Ovariectomy produced a global deterioration involving both trabecular and cortical 3D-microarchitecture and vBMD. Raloxifene maintained both microarchitecture and vBMD, whereas estradiol prevented deterioration of some microstructural parameters, such as trabecular thickness (Tb.Th), trabecular bone pattern factor (Tb.Pf), and cortical periosteal perimeter (Ct.Pe.Pm), but did not completely block the loss in vBMD. Mice treated with genistein exhibited the less favourable profile in both vBMD and microstructural parameters preserving only cross-sectional bone area (B.Ar) and Ct.Pe.Pm in cortical bone.

Conclusion

Our data indicate that, at the selected doses, raloxifene was more effective in preserving bone OVX-induced changes than either estradiol or genistein, the advantage being concentrated in both bone microarchitecture and vBMD.