, Volume 18, Issue 3, pp 351-362
Date: 22 Nov 2006

A comparative study of the bone-restorative efficacy of anabolic agents in aged ovariectomized rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Introduction

The study was designed to compare the bone anabolic effects of basic fibroblast growth factor (bFGF), a selective agonist for prostaglandin E receptor subtype EP4, and parathyroid hormone (PTH) in aged ovariectomized (OVX) rats with severe cancellous osteopenia.

Methods

Groups of aged OVX rats were maintained untreated for 1 year postovariectomy (15 months of age) to develop severe tibial cancellous osteopenia. These animals were then treated with bFGF or the EP4 agonist (EP4) for 3 weeks. Other groups of aged OVX rats were treated with EP4 or PTH alone for 11 weeks, or sequentially with bFGF or EP4 for 3 weeks followed by PTH for 8 weeks. Cancellous and cortical bone histomorphometry were performed in the right proximal tibial metaphysis and tibial diaphysis respectively.

Results

Treatment with bFGF for 3 weeks markedly increased serum osteocalcin, osteoid volume, and osteoblast and osteoid surfaces to a greater extent than EP4. Basic FGF, but not EP4 or PTH, induced formation of osteoid islands within bone marrow. EP4 stimulated cancellous bone turnover, but failed to restore lost cancellous bone in the severely osteopenic proximal tibia after 11 weeks of treatment. In contrast, EP4, much like PTH, increased cortical bone mass in the tibial diaphysis by stimulating both periosteal and endocortical bone formation. Treatment of aged OVX rats with PTH alone tended to partially reverse the severe tibial cancellous osteopenia, whereas sequential treatment with bFGF and PTH increased tibial cancellous bone mass to near the level of vehicle-treated control rats. These findings indicate that bFGF had the strongest stimulatory effect on cancellous bone formation, and was the only anabolic agent to induce formation of osteoid islands within the bone marrow of the severely osteopenic proximal tibia. Therefore, bFGF may be more effective for the reversal of severe cancellous osteopenia. PTH and EP4 increased cortical bone mass to nearly the same extent, but cancellous bone mass was greater by two-fold in PTH-treated OVX rats than in EP4-treated OVX rats.

Conclusion

These findings in aged OVX rats suggest that PTH is more efficacious than EP4 for augmentation of cancellous bone in the severely osteopenic, estrogen-deplete skeleton.