, Volume 18, Issue 2, pp 185-192,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 10 Nov 2006

The prevalence of vertebral fracture amongst patients presenting with non-vertebral fractures

Abstract

Introduction

Despite vertebral fracture being a significant risk factor for further fracture, vertebral fractures are often unrecognised. A study was therefore conducted to determine the proportion of patients presenting with a non-vertebral fracture who also have an unrecognised vertebral fracture.

Methods

Prospective study of patients presenting with a non-vertebral fracture in South Glasgow who underwent DXA evaluation with vertebral morphometry (MXA) from DV5/6 to LV4/5. Vertebral deformities (consistent with fracture) were identified by direct visualisation using the Genant semi-quantitative grading scale.

Results

Data were available for 337 patients presenting with low trauma non-vertebral fracture; 261 were female. Of all patients, 10.4% were aged 50–64 years, 53.2% were aged 65–74 years and 36.2% were aged 75 years or over. According to WHO definitions, 35.0% of patients had normal lumbar spine BMD (T-score −1 or above), 37.4% were osteopenic (T-score −1.1 to −2.4) and 27.6% osteoporotic (T-score −2.5 or lower). Humerus (n=103, 31%), radius–ulna (n=90, 27%) and hand/foot (n=53, 16%) were the most common fractures. For 72% of patients (n=241) the presenting fracture was the first low trauma fracture to come to clinical attention. The overall prevalence of vertebral deformity established by MXA was 25% (n=83); 45% (n=37) of patients with vertebral deformity had deformities of more than one vertebra. Of the patients with vertebral deformity and readable scans for grading, 72.5% (58/80) had deformities of grade 2 or 3. Patients presenting with hip fracture, or spine T-score ≤−2.5, or low BMI, or with more than one prior non-vertebral fracture were all significantly more likely to have evidence of a prevalent vertebral deformity (p<0.05). However, 19.8% of patients with an osteopenic T-score had a vertebral deformity (48% of which were multiple), and 16.1% of patients with a normal T-score had a vertebral deformity (26.3% of which were multiple). Following non-vertebral fracture, some guidelines suggest that anti-resorptive therapy should be reserved for patients with DXA-proven osteoporosis. However, patients who have one or more prior vertebral fractures (prevalent at the time of their non-vertebral fracture) would also become candidates for anti-resorptive therapy—which would have not been the case had their vertebral fracture status not been known. Overall in this study, 8.9% of patients are likely to have had a change in management by virtue of their underlying vertebral deformity status. In other words, 11 patients who present with a non-vertebral fracture would need to undergo vertebral morphometry in order to identify one patient who ought to be managed differently.

Conclusions

Our results support the recommendation to perform vertebral morphometry in patients who are referred for DXA after experiencing a non-vertebral fracture. Treatment decisions will then better reflect any given patient’s future absolute fracture risk. The 'Number Needed to Screen' if vertebral morphometry is used in this way would be seven to identify one patient with vertebral deformity, and 14 to identify one patient with two or more vertebral deformities. Although carrying out MXA will increase radiation exposure for the patient, this increased exposure is significantly less than would be obtained if X-rays of the dorso-lumbar spine were obtained.