, Volume 16, Issue 11, pp 1307-1314
Date: 06 Jul 2005

Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Previously, high resolution MRI to assess bone structure of deep-seated regions of the skeleton such as the proximal femur was substantially limited by signal-to-noise ratio (SNR). With the advent of new optimized pulse sequences in MRI at 1.5 T and 3 T, it may now be possible to depict and quantify the trabecular microarchitecture in the proximal femur. The purpose of this study was to investigate the feasibility of assessing trabecular microstructure of the human proximal femur in vivo with MR imaging at 1.5 T and 3 T. MR images of six young, healthy male and female subjects were acquired using standard clinical 1.5-T and high-field 3-T whole-body MR scanners. Using a T2/T1-weighted 3D FIESTA sequence (and a 3D FIESTA-C sequence at 3 T to avoid susceptibility artifacts) a resolution of 0.234 × 0.234 × 1.5 mm3 was achieved in vivo. Structural parameters analogous to standard bone histomorphometry were determined in femoral head and trochanter regions of interest. Bone mineral density (BMD) measurements were also obtained using dual-energy X-ray absorptiometry (DXA) for the femoral trochanter in the same subjects. The bone structure of the proximal femur is substantially better depicted at 3 T than at 1.5 T. Correlation between the structural parameters obtained at both field strengths was up to R =0.86 for both the femoral head and the trochanteric region. However, the resolution of the images limits the application of 3D structural analysis, making the assessment more akin to 2D textural measures, which may be correlated to histomorphometric but are not identical measures. This feasibility study establishes the potential of MRI as a means of imaging proximal femur structure, and improvements in technique and resolution enhancements are warranted.