, Volume 15, Issue 2, pp 139-144
Date: 13 Nov 2003

Characteristics and course of bone mineral densities among fast bone losers in a rural Japanese community: the Miyama Study

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The aim of this study was to clarify and compare the temporal course of bone mineral density (BMD) between fast bone losers and normal residents in Miyama Village, a rural Japanese community. BMD was measured over a 10-year period in a cohort study in Miyama Village, Wakayama Prefecture, Japan, to provide information on rate of bone loss in the mature and elderly population. Subjects (n=400) were selected by sex and age stratum from the full list of residents born in 1910–1949, with 50 men and 50 women in each age decade. Baseline BMD of the lumbar spine and proximal femur was measured using dual energy X-ray absorptiometry in 1990, 1993, 1997 and 2000. In the cohort, 171 men and 189 women completed the follow-up survey performed in 1993. After calculating the rate of bone loss between 1990 and 1993, the greatest tertile from the distribution of bone loss was categorized as fast bone losers, with the remainder considered as normal subjects. Changes in BMD were compared between normal subjects and fast bone losers over the 10-year period. Mean rate of change for BMD at both lumbar spine and femoral neck in fast bone losers recovered to levels similar to those in normal subjects over 7 years of observation. By contrast, BMD at the lumbar spine and femoral neck decreased steeply over the 10-year period in both groups, and mean BMD for fast bone losers was significantly lower than that of normal subjects (P<0.05). These differences were apparent only at the lumbar spine in both men and women, even after adjusting for age. These results indicate that fast bone loss is a transient phenomenon rather than a fixed status, although individuals who have been categorized as fast bone losers at some stage continue to display low BMD in the lumbar spine.