Journal of Geodesy

, Volume 71, Issue 4, pp 189–208

Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4

  • P. Schwintzer
  • C. Reigber
  • A. Bode
  • Z. Kang
  • S. Y. Zhu
  • F.-H. Massmann
  • J. C. Raimondo
  • R. Biancale
  • G. Balmino
  • J. M. Lemoine
  • B. Moynot
  • J. C. Marty
  • F. Barlier
  • Y. Boudon

DOI: 10.1007/s001900050087

Cite this article as:
Schwintzer, P., Reigber, C., Bode, A. et al. Journal of Geodesy (1997) 71: 189. doi:10.1007/s001900050087

Summary.

 GFZ Potsdam and GRGS Toulouse/Grasse jointly developed a new pair of global models of the Earth's gravity field to satisfy the requirements of the recent and future geodetic and altimeter satellite missions. A precise gravity model is a prerequisite for precise satellite orbit restitution, tracking station positioning and altimeter data reduction. According to different applications envisaged, the new model exists in two parallel versions: the first one being derived exclusively from satellite tracking data acquired on 34 satellites, the second one further incorporating satellite altimeter data over the oceans and terrestrial gravity data. The most recent “satellite-only” gravity model is labelled GRIM4-S4 and the “combined” gravity model GRIM4-C4. The models are solutions in spherical harmonics and have a resolution up to degree and order 60 plus a few resonance terms in the case of GRIM4-S4, and up to degree/order 72 in the case of GRIM4-C4, corresponding to a spatial resolution of 555 km at the Earth's surface. The gravitational coefficients were estimated in a rigorous least squares adjustment simultaneously with ocean tidal terms and tracking station position parameters, so that each gravity model is associated with a consistent ocean tide model and a terrestrial reference frame built up by over 300 optical, laser and Doppler tracking stations. Comprehensive quality tests with external data and models, and test arc computations over a wide range of satellites have demonstrated the state-of-the-art capabilities of both solutions in long-wavelength geoid representation and in precise orbit computation.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • P. Schwintzer
    • 1
  • C. Reigber
    • 1
  • A. Bode
    • 1
  • Z. Kang
    • 1
  • S. Y. Zhu
    • 1
  • F.-H. Massmann
    • 1
  • J. C. Raimondo
    • 1
  • R. Biancale
    • 2
  • G. Balmino
    • 2
  • J. M. Lemoine
    • 2
  • B. Moynot
    • 2
  • J. C. Marty
    • 2
  • F. Barlier
    • 3
  • Y. Boudon
    • 3
  1. 1.GeoForschungsZentrum (GFZ, Div. I), Telegrafenberg A17 D-14473 Potsdam, GermanyDE
  2. 2.Groupe de Recherche de Géodésie Spatiale (GRGS), 18, Avenue Edouard Belin F-31401 Toulouse Cedex 4, FranceFR
  3. 3.Groupe de Recherche de Géodésie Spatiale (GRGS), OCA/CERGA, Avenue Copernic, F-06130 Grasse, FranceFR