Journal of Geodesy

, Volume 87, Issue 10, pp 981–1001

Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns

  • Kamil Teke
  • Tobias Nilsson
  • Johannes Böhm
  • Thomas Hobiger
  • Peter Steigenberger
  • Susana García-Espada
  • Rüdiger Haas
  • Pascal Willis
Original Article

DOI: 10.1007/s00190-013-0662-z

Cite this article as:
Teke, K., Nilsson, T., Böhm, J. et al. J Geod (2013) 87: 981. doi:10.1007/s00190-013-0662-z

Abstract

Continuous, very long baseline interferometry (VLBI) campaigns over 2 weeks have been carried out repeatedly, i.e., CONT02 in October 2002, CONT05 in September 2005, CONT08 in August 2008, and CONT11 in September 2011, to demonstrate the highest accuracy the current VLBI was capable at that time. In this study, we have compared zenith total delays (ZTD) and troposphere gradients as consistently estimated from the observations of VLBI, Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) at VLBI sites participating in the CONT campaigns. We analyzed the CONT campaigns using the state-of-the-art software following common processing strategies as closely as possible. In parallel, ZTD and gradients were derived from numerical weather models, i.e., from the global European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields, the High Resolution Limited Area Model (European sites), the Japan Meteorological Agency-Operational Meso-Analysis Field (MANAL, over Japan), and the Cloud Resolving Storm Simulator (Tsukuba, Japan). Finally, zenith wet delays were estimated from the observations of water vapor radiometers (WVR) at sites where the WVR observables are available during the CONT sessions. The best ZTD agreement, interpreted as the smallest standard deviation, was found between GNSS and VLBI techniques to be about 5–6 mm at most of the co-located sites and CONT campaigns. We did not detect any significant improvement in the ZTD agreement between various techniques over time, except for DORIS and MANAL. On the other hand, the agreement and thus the accuracy of the troposphere parameters mainly depend on the amount of humidity in the atmosphere.

Keywords

Troposphere delaysSpace geodetic techniquesNumerical weather modelsWater vapor radiometers

Supplementary material

190_2013_662_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (pdf 97 KB)
190_2013_662_MOESM2_ESM.pdf (421 kb)
Supplementary material 2 (pdf 420 KB)
190_2013_662_MOESM3_ESM.pdf (637 kb)
Supplementary material 3 (pdf 636 KB)
190_2013_662_MOESM4_ESM.pdf (1.6 mb)
Supplementary material 4 (pdf 1630 KB)
190_2013_662_MOESM5_ESM.pdf (3 mb)
Supplementary material 5 (pdf 3024 KB)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kamil Teke
    • 1
    • 2
  • Tobias Nilsson
    • 3
  • Johannes Böhm
    • 2
  • Thomas Hobiger
    • 4
  • Peter Steigenberger
    • 5
  • Susana García-Espada
    • 6
    • 7
  • Rüdiger Haas
    • 6
  • Pascal Willis
    • 8
    • 9
  1. 1.Department of Geomatics EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  3. 3.Section 1.1, GPS/Galileo Earth ObservationsGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Space-Time Standards GroupNational Institute of Information and Communications Technology (NICT)KoganeiJapan
  5. 5.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  6. 6.Department of Earth and Space SciencesChalmers University of Technology, Onsala Space ObservatoryOnsalaSweden
  7. 7.Instituto Geografico NacionalYebesSpain
  8. 8.Institut national de l’information géographique et forestière, Direction TechniqueSaint-MandéFrance
  9. 9.Institut de Physique du Globe de ParisUniv Paris Diderot, Sorbonne Paris CitéParisFrance