Journal of Geodesy

, 85:819

First GOCE gravity field models derived by three different approaches

  • Roland Pail
  • Sean Bruinsma
  • Federica Migliaccio
  • Christoph Förste
  • Helmut Goiginger
  • Wolf-Dieter Schuh
  • Eduard Höck
  • Mirko Reguzzoni
  • Jan Martin Brockmann
  • Oleg Abrikosov
  • Martin Veicherts
  • Thomas Fecher
  • Reinhard Mayrhofer
  • Ina Krasbutter
  • Fernando Sansò
  • Carl Christian Tscherning
Original Article

DOI: 10.1007/s00190-011-0467-x

Cite this article as:
Pail, R., Bruinsma, S., Migliaccio, F. et al. J Geod (2011) 85: 819. doi:10.1007/s00190-011-0467-x

Abstract

Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10 cm in terms of geoid heights, and 3 mGal in terms of gravity anomalies, globally at a resolution of 100 km (degree/order 200).

Keywords

Gravity field GOCE Gradiometry GPS Spherical harmonics Global gravity model 

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roland Pail
    • 1
  • Sean Bruinsma
    • 2
  • Federica Migliaccio
    • 3
  • Christoph Förste
    • 4
  • Helmut Goiginger
    • 5
  • Wolf-Dieter Schuh
    • 6
  • Eduard Höck
    • 7
  • Mirko Reguzzoni
    • 3
  • Jan Martin Brockmann
    • 6
  • Oleg Abrikosov
    • 4
    • 8
  • Martin Veicherts
    • 9
  • Thomas Fecher
    • 1
  • Reinhard Mayrhofer
    • 5
  • Ina Krasbutter
    • 6
  • Fernando Sansò
    • 10
  • Carl Christian Tscherning
    • 9
  1. 1.Institute of Astronomical and Physical GeodesyTU MünchenMunichGermany
  2. 2.Department of Terrestrial and Planetary GeodesyCNES-DCT/SI/GSToulouse Cedex 9France
  3. 3.Politecnico di Milano, DIIAR-Sez. RilevamentoMilanItaly
  4. 4.Department 1: Geodesy and Remote Sensing, Section 1.2: Global Geomonitoring and Gravity FieldHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  5. 5.Institute of Theoretical Geodesy and Satellite GeodesyGraz University of TechnologyGrazAustria
  6. 6.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  7. 7.Department of Satellite Geodesy, Space Research InstituteAustrian Academy of SciencesGrazAustria
  8. 8.WesslingGermany
  9. 9.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  10. 10.Politecnico di Milano, Polo Regionale di ComoComoItaly

Personalised recommendations