Skip to main content

Advertisement

Log in

First GOCE gravity field models derived by three different approaches

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10 cm in terms of geoid heights, and 3 mGal in terms of gravity anomalies, globally at a resolution of 100 km (degree/order 200).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertella A, Migliaccio F, Reguzzoni M, Sansò F (2004) Wiener filters and collocation in satellite gradiometry. In: Sansò F (ed) International Association of Geodesy Symposia, “V Hotine-Marussi Symposium on Mathematical Geodesy”, vol 127, 17–21 June 2002, Matera, Italy. Springer, Berlin, pp 32–38

  • Andersen OA, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114. doi:10.1029/2008JC005179

  • Badura T (2006) Gravity field analysis from satellite orbit information applying the energy integral approach. Dissertation, Graz University of Technology

  • Beutler G (2005) Methods of celestial mechanics. Physical, mathematical, and numerical principles, vol I. Springer. ISBN:978-3-540-40749-2

  • Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach—theoretical foundations. J Geod 84(10): 605–624. doi:10.1007/s00190-010-0401-7

    Article  Google Scholar 

  • Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, Gruber T, König R, Massmann F-H, Raimondo JC, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27(22): 3611–3614

    Article  Google Scholar 

  • Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38: 1. doi:10.1029/2010GL045633

    Article  Google Scholar 

  • Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geod (submitted)

  • Bouman J, Fiorot S, Fuchs M, Gruber T, Rispens S, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE gravity gradients along the orbit. J Geod. doi:10.1007/s00190-011-0464-0

  • Boxhammer CH, Schuh W-D et al (2006) GOCE gravity field modeling: computational aspects—free kite numbering scheme. In: Rummel R (ed.) Observation of the Earth system from Space. Springer, Berlin, pp 209–224

    Chapter  Google Scholar 

  • Brockmann JM, Kargoll B, Krasbutter I, Schuh W-D, Wermuth M (2010) GOCE data analysis: from calibrated measurements to the global Earth gravity field. In: Flechtner et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 213–229. ISBN 978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_17

  • Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686. ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN: 1609-042X

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth explorer core mission. In: Beutler et al (eds) Earth gravity field from Space—from sensors to Earth Science, Space Sciences Series of ISSI, vol 18. Kluwer, Dordrecht, pp 419–432. ISBN:1-4020-1408-2

  • EGG-C (2010a) GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4.2. European Space Agency, Noordwijk. http://earth.esa.int/pub/ESA_DOC/GOCE/Product_Data_Handbook_4.1.pdf

  • EGG-C (2010b) GOCE Standards. GP-TN-HPF-GS-0111, Issue 3.2. European Space Agency, Noordwijk. http://earth.esa.int/pub/ESA_DOC/GOCE/GOCE_Standards_3.2.pdf

  • Flechtner F, Dahle C, Neumayer KH, König R, Förste C (2010) The Release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 41–58. ISBN:978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_4

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82: 331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, Koenig R, Meyer U (2008b) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union (Vienna, Austria 2008), Geophys Res Abstr 10, Abstract No. EGU2008-A-06944

  • Gruber T (2009) Evaluation of the EGM2008 gravity field by means of GPS-levelling and sea surface topography solutions; External quality evaluation reports of EGM08. Newton’s Bull 4:3–17. Bureau Gravimétrique International (BGI)/International Geoid Service (IGeS). ISSN:1810–8555

  • Gruber T, Visser P, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod (submitted)

  • Ilk K-H, Löcher A (2005): The Use of Energy Balance Relations for Validation of Gravity Field Models and Orbit Determination Results. International Association of Geodesy Symposia, 2005, Vol. 128, Symposium G04, 494-499, doi:10.1007/3-540-27432-4_84

  • Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2009) AIUB-GRACE02S—status of GRACE gravity field recovery using the celestial mechanics approach. In: Paper presented at the IAG Scientific Assembly 2009, Aug 31–Sept 4, 2009, Buenos Aires, Argentina

  • Jäggi A, Bock H, Prange L, Meyer U, Beutler G (2010) GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv Space Res 47(6): 1020–1028. doi:10.1016/j.asr.2010.11.008

    Article  Google Scholar 

  • Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75: 85–101

    Article  Google Scholar 

  • Kenyon SC, Pavlis NK (1997) The development of a global surface gravity data base to be used in the joint DMA/GSFC geopotential model. In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy. IAG symposia, vol 117. Springer, Heidelberg, pp 470–477

    Google Scholar 

  • Koch KH, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76: 259–268. doi:10.1007/s00190-002-0245-x

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH,Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olsen TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA technical paper NASA/TP-1998-206861. Goddard Space Flight Center, Greenbelt

  • Marty J, Bruinsma, Balmino G, Abrikosov O, Förste C, Rothacher M (2005) Gravity field recovery with simulated GOCE observations. American Geophysical Union, Fall Meeting 2005, abstract #G33C-0052

  • Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of Bonn

  • Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravitiy field model from short kinematical arcs of a one-year observation period. J Geod 78(7–8). doi:10.1007/s00190-004-0413-2

  • Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk KH (2010a) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner et al. (eds) System Earth via geodetic-geophysical space techniques. Springer, New York. ISBN:978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_13

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010b) The satellite-only gravity field model ITG-Grace2010s. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010

  • Mayrhofer R, Pail R, Fecher T (2010) Quick-look gravity field solution as part of the GOCE quality assessment. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6;ISSN:1609-042X

  • Metzler B, Pail R (2005) GOCE data processing: the spherical cap regularization approach. Stud Geophys Geod 49: 441–462. doi:10.1007/s11200-005-0021-5

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78: 304–313. doi:10.1007/s00190-004-0396-z

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2007) On the use of gridded data to estimate potential coefficients. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 311–318. ISBN:92-9092-938-3; ISSN:1609-042X

  • Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2009) An error model for the GOCE space-wise solution by Monte Carlo methods. In: Sideris MG (ed) IAG symposia, “Observing our Changing Earth”, vol 133. Springer, Berlin, pp 337–344. doi:10.1007/978-3-540-85426-5

  • Migliaccio F, Reguzzoni M, Sansò F, Tscherning CC, Veicherts M (2010a) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN:1609-042X

  • Migliaccio F, Reguzzoni M, Tselfes N (2010) A simulated space-wise solution using GOCE kinematic orbits. Bull Geod Geomat 1: 55–68

    Google Scholar 

  • Moritz H (1989) Advanced physical geodesy, 2nd edn. Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Oppenheim AV, Schafer RW (1999) Zeitdiskrete Signalverarbeitung. 3. Auflage. Oldenbourg Verlag, München Wien

    Google Scholar 

  • Pail R (2005) A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geod 79: 231–241. doi:10.1007/s00190-005-0464-z

    Article  Google Scholar 

  • Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76: 462–474. doi:10.1007/s00190-002-0277-2

    Article  Google Scholar 

  • Pail R, Metzler B, Lackner B, Preimesberger T, Höck E, Schuh WD, Alkathib H, Boxhammer Ch, Siemes Ch, Wermuth M (2007a) GOCE gravity field analysis in the framework of HPF: operational software system and simulation results. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 249–256

  • Pail R, Metzler B, Preimesberger T, Lackner B, Wermuth M (2007b) GOCE quick-look gravity field analysis in the framework of HPF. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 325–332

  • Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN:1609-042X

  • Papoulis A (1984) Signal analysis. McGraw Hill, New York

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. In: Paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008

  • Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geod 83: 13–29. doi:10.1007/s00190-008-0225-x

    Article  Google Scholar 

  • Reigber Ch, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29: 14. doi:10.1029/2002GL015064

    Article  Google Scholar 

  • Reigber C, Jochmann H, Wünsch J, Neumayer KH, Schwintzer P (2003) First insight into temporal gravity variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, New York, pp 128–133

    Google Scholar 

  • Rummel R, van Gelderen M, Koop R, Schrama E, Sansó F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Neth Geod Comm, Publications on Geodesy, vol 39, Delft, The Netherlands

  • Rummel R, Gruber T, Koop R (2004) High level processing facility for GOCE: products and processing strategy. In: Lacoste H (ed) Proceedings of the 2nd international GOCE user workshop “GOCE, The Geoid and Oceanography”. ESA SP-569, ESA. ISBN:92-9092-880-8; ISSN:1609-042X

  • Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteil Geod Inst TU Graz, no 81, 156 pp

  • Schuh WD (2002) Improved modelling of SGG-data sets by advanced filter strategies. ESA-Project “From Eötvös to mGal+”. Final report, ESA/ESTEC Contract 14287/00/NL/DC, WP 2. ESA, Noordwijk, pp 113–181

  • Schuh WD, Boxhammer C, Siemes C (2006) Correlations, variances, covariances—from GOCE signals to GOCE products. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006. ESA SP-627, European Space Agency, Noordwijk, pp 257–264

  • Schuh WD, Brockmann JM, Kargoll B, Krasbutter I, Pail R (2010) Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In: Proceedings of the ESA living planet symposium, 28 June–2 July 2010, Bergen, Norway

  • Shako R, Förste C, Abrikosov O, Kusche J (2010) GOCE and its use for a high-resolution global gravity combination model. In: Flechtner F et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 231–242. ISBN:978-3-642-10227-1; ISBN:978-3-642-10228-8

  • Siemes C (2008) Digital Filtering algorithms for decorrelation within large least squares problems. Dissertation, University of Bonn

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. DGK, C:527, Verlag der Bayerischen Akademie der Wissenschaften. ISBN:3-7696-9566-6; ISSN:0065-5325

  • Sneeuw N, van Gelderen M (1997) The polar gap. In: Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in Earth Sciences, vol 65. Springer, Berlin, pp 559–568. doi:10.1007/BFb0011699

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. American Geophysical Union. doi:10.1029/2004GL019920

    Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean Earth gravity model from GRACE. Eos Trans, AGU, 88(52). Fall Meet Suppl, Abstract G42A-03

  • Tscherning CC (2001) Computation of spherical harmonic coefficients and their error estimates using least squares collocation. J Geod 75: 12–18. doi:10.1007/s001900000150

    Article  Google Scholar 

  • Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geod 77: 207–216. doi:10.1007/s00190-003-0315-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pail, R., Bruinsma, S., Migliaccio, F. et al. First GOCE gravity field models derived by three different approaches. J Geod 85, 819–843 (2011). https://doi.org/10.1007/s00190-011-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0467-x

Keywords

Navigation