, Volume 81, Issue 1, pp 17-38
Date: 17 Oct 2006

Regional gravity modeling in terms of spherical base functions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This article provides a survey on modern methods of regional gravity field modeling on the sphere. Starting with the classical theory of spherical harmonics, we outline the transition towards space-localizing methods such as spherical splines and wavelets. Special emphasis is given to the relations among these methods, which all involve radial base functions. Moreover, we provide extensive applications of these methods and numerical results from real space-borne data of recent satellite gravity missions, namely the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). We also derive high-resolution gravity field models by effectively combining space-borne and surface measurements using a new weighted level-combination concept. In addition, we outline and apply a strategy for constructing spatio-temporal fields from regional data sets spanning different observation periods.