Original Article

Journal of Geodesy

, Volume 80, Issue 3, pp 128-136

First online:

A Critical Analysis of a Recent Test of the Lense–Thirring Effect with the LAGEOS Satellites

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper, we quantitatively discuss the impact of the current uncertainties in the even zonal harmonic coefficients J l of the Newtonian part of the terrestrial gravitational potential on the measurement of the general relativistic Lense–Thirring effect. We use a suitable linear combination of the nodes Ω of the laser-ranged LAGEOS and LAGEOS-II satellites. The one-sigma systematic error due to mismodelling of the J l coefficients ranges from ~ 4% for the EIGENGRACE02S gravity field model to ~ 9% for the GGM02S model. Another important source of systematic error of gravitational origin is represented by the secular variations j l of the even zonal harmonics. While the relativistic and J l signals are linear in time, the shift due to j l is quadratic. We quantitatively assess their impact on the measurement of the Lense–Thirring effect with numerical simulations obtaining a 10−20% one-sigma total error over 11 years for EIGEN-GRACE02S. Ciufolini and Pavlis (Nature 431:958–960, 2004) claim a total error of 5% at the one-sigma level.


Lense–Thirring effect LAGEOS satellites GRACE Earth gravity field models Even zonal harmonics and their secular variations