Anthony M, Biggs N (1992) Computational learning theory. Cambridge University Press, Cambridge

MATHAtamtürk A, Zhang M (2005) Two-stage robust network flow and design for demand uncertainty. Manuscript

Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99(2, Ser. A):351–376

MATHCrossRefMathSciNetBen-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

MATHMathSciNetCrossRefBen-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. SIAM, Philadelphia

MATHBertsimas D, Sim M (2004) Robust conic optimization. Under review in Math Prog

Bukszár J (2001) Upper bounds for the probability of a union by multitrees. Adv Appl Probab 33:437–452

MATHCrossRefCalafiore G, Campi MC (2003) Uncertain convex programs: Randomized solutions and confidence levels. To appear in Math Prog

Calafiore G, Campi MC (2004) Decision making in an uncertain environment: the scenario-based optimization approach. Working paper

de Farias DP, Van Roy B (2001) On constraint sampling in the linear programming approach to approximate dynamic programming. To appear in Math Oper Res

Dentcheva D, Prékopa A, Ruszczyński A (2000) Concavity and efficient points of discrete distributions in probabilistic programming. Math Program 89(1, Ser. A):55–77

MATHCrossRefMathSciNetDupačová J (2001) Stochastic programming: minimax approach. In Encyclopedia of Optimization. Kluwer

Erdoğan E, Iyengar G (2004) Ambiguous chance constrained problems and robust optimization. To appear in Math Prog

Erdoğan E, Iyengar G (2005) Boosting, importance sampling, and convex chance constrained problem. Manuscript

Freund RM, Vera JR (1999) Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM J Opt 10:155–176

MATHCrossRefMathSciNetGoldfarb D, Iyengar G (2003a) Robust convex quadratically constrained programs. Math Program Ser B. 97(3):495–515

MATHCrossRefMathSciNetGoldfarb D, Iyengar G (2003b) Robust portfolio selection problems. Math Oper Res 28(1):1–38

MATHCrossRefMathSciNetHampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, London

MATHHenrion R (2005) Structural properties of linear probabilistic constraints. Stochastic programming E-print series (SPEPS), 13

Kan Yuri (2002) Application of the quantile optimization to bond portfolio selection. In: Stochastic optimization techniques (Neubiberg/Munich, 2000), vol 513 of Lecture Notes in Econom and Math Systems, pp 285–308. Springer, Berlin Heidelberg New York

Kearns MJ, Vazirani UV (1997) An introduction to computational learning theory. MIT Press, Cambridge

Khachiyan LG (1979) A polynomial algorithm in linear programming. Doklady Akademiia Nauk SSSR, 244(S):1093–1096 Translated in Soviet Mathematics Doklady 20:1

Lagoa CM, Li X, Sznaier M (2005) Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J Optim 15:938–951

MATHCrossRefMathSciNetLobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284(1-3):193–228

MATHCrossRefMathSciNetNemirovski A (2003) On tractable approximations of randomly perturbed convex constraints. In Proc. 42nd IEEE Conf. Dec. Contr. (CDC), vol 3, pp 2419–2422

Nemirovski A, Shapiro A (2004) Scenario approximations of chance constraints. To appear in Probab Randomized Methods Des Uncertain

Prekopa A (1995) Stochastic Programming. Kluwer, Dordrecht

Rachev ST (1991) Probability metrics and the stability of stochastic models. Wiley, London

MATHRenegar J (1994) Some perturbation theory for linear programming. Math Prog 65:73–91

CrossRefMathSciNetRenegar J (1995) Linear programming, complexity theory and elementary functional analysis. Math Prog 70:279–351

MathSciNetRuszczynski A, Shapiro A (eds) (2003) Stochastic programming. Handbook in Operations Research and Management Science. Elsevier, Amsterdam

Shapiro A Some recent developments in stochastic programming. ORB Newsletter, Available at http://www.ballarat.edu.au/ard/itms/CIAO/ORBNewsletter/issue13.shtml#11. 13, March 2004

Shapiro A, Ahmed S (2004) On a class of minimax stochastic programs. To appear in SIAM J Opt

Shapiro A, Kleywegt AJ (2002) Minimax analysis of stochastic problems. Optim Methods Softw 17:523–542

MATHCrossRefMathSciNetShor NZ (1977) Cut-off method with space extension in convex programming problems. Cybern 13:94–96

Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New York

MATHŽáčková J (1966) On minimax solutions of stochastic linear programs. Čas Pěst Mat 423–430