Skip to main content
Log in

Analysis of Divergence in Loglinear Models When Expected Frequencies are Subject to Linear Constraints

  • Original Article
  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Consider the loglinear model for categorical data under the assumption of multinomial sampling. We are interested in testing between various hypotheses on the parameter space when we have some hypotheses relating to the parameters of the models that can be written in terms of constraints on the frequencies. The usual likelihood ratio test, with maximum likelihood estimator for the unspecified parameters, is generalized to tests based on -divergence statistics, using minimum -divergence estimator. These tests yield the classical likelihood ratio test as a special case. Asymptotic distributions for the new -divergence test statistics are derived under the null hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A (2002). Categorical data analysis. Wiley, London

    MATH  Google Scholar 

  • Aitchison J, Silvey SD (1958). Maximum likelihood estimation of parameters subject to constraints. Ann Math Stat 29:813–828

    Article  MathSciNet  MATH  Google Scholar 

  • Bhapkar VP (1979). On tests of symmetry when higher order interactions are absent. J Indian Stat Assoc 17:17–26

    Google Scholar 

  • Bonett DG (1989). Pearson chi-square estimator and test for log-linear models with expected frequencies subject to linear constraints. Stat Probab Lett 8:175–177

    Article  MathSciNet  Google Scholar 

  • Christensen R (1997). Log-linear models and logistic regression, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Collet D (1994). Modelling survival data in medical research. Chapman and Hall, London

    Google Scholar 

  • Cressie N, Pardo L (2000). Minimum -divergence estimator and hierarchical testing in loglinear models. Stat Sinica 10:867–884

    MATH  MathSciNet  Google Scholar 

  • Cressie N, Pardo L (2002). Model checking in loglinear models using -divergences and MLEs. J Stat Plan Infer 103:437–453

    Article  MATH  MathSciNet  Google Scholar 

  • Cressie N, Read TRC (1984). Multinomial goodness-of-fit tests. J R Stat Soc B 46:440–464

    MATH  MathSciNet  Google Scholar 

  • Cressie N, Pardo L, Pardo MC (2003). Size and power considerations for testing loglinear models using -divergence test statistics. Stat Sinica 13:550–570

    MathSciNet  Google Scholar 

  • Gokhale DV (1973). Iterative maximum likelihood estimation for discrete distributions. Sankhya B 35:293–298

    MathSciNet  Google Scholar 

  • Haber M (1985). Maximum likelihood methods for linear and log-linear models in categorical data. Comput Stat Data Anal 3:1–10

    Article  MATH  MathSciNet  Google Scholar 

  • Haber M, Brown MB (1986). Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints. J Am Stat Assoc 81:477–482

    Article  MATH  MathSciNet  Google Scholar 

  • Haberman SJ (1974). The analysis of frequency data. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  • Imrey PB, Koch GG, Stokes ME (1982). Categorical data analysis: some reflections on the log-linear model and logistic regression. Part II. Data analysis. Int Stat Rev 50:35–63

    Article  MATH  MathSciNet  Google Scholar 

  • Lang JB (1996). Maximum likelihood methods for a generalized class of loglinear models. Ann Stat 24:726–752

    Article  MATH  Google Scholar 

  • Lang JB, McDonald JW, Smith WF (1999). Association marginal modeling of multivariate categorical responses: a maximum likelihood approach. J Am Stat Assoc 94:1161–1171

    Article  MATH  MathSciNet  Google Scholar 

  • Lindsay BG (1994). Efficiency versus robutness: the case for minimum Hellinger distance and other methods. Ann Stat 22:1081–1114

    Article  MATH  MathSciNet  Google Scholar 

  • Matusita K (1954). On the estimation by the minimum distance method. Ann Inst Stat Math 5:59–65

    Article  MATH  MathSciNet  Google Scholar 

  • Neyman J (1949). Contribution to the theory of the χ2-test. Proceedings of the first symposium on mathematical statistics and probability. Univ. of Berkeley Press, Berkeley, pp. 239–273

  • Pardo L (2006). Statistical inference based on divergence measures. Statistics: textbooks and monographs. Chapman Hall/CRC, New York

    MATH  Google Scholar 

  • Pardo L, Pardo MC (2005). Nonadditivity in loglinear models using -divergences and MLEs. J Stat Plan Infer 127:237–252

    Article  MATH  MathSciNet  Google Scholar 

  • Pardo JA, Pardo L, Zografos K (2002). Minimum -divergence estimators with constraints in multinomial populations. J Stat Plan Infer 104(1).:221–237

    Article  MATH  MathSciNet  Google Scholar 

  • Parr WC (1981). Minimum distance estimation: a bibliography. Commun Stat (Theory Methods). 10:1205–1224

    Article  MathSciNet  Google Scholar 

  • Read TRC, Cressie N (1988). Goodness of fit Statistics for discrete multivariate data. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Searle SR (1971). Linear models. Wiley, New York

    MATH  Google Scholar 

  • Silvey SD (1959). The Lagrangian multiplier test. Ann Math Stat 30:389–407

    Article  MathSciNet  MATH  Google Scholar 

  • Vajda I (1989). Theory of statistical inference and information. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Wedderburn RWM (1974). Generalized linear models specified in terms of constraints. J R Stat Soc B 36:449–454

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, L., Menéndez, M.L. Analysis of Divergence in Loglinear Models When Expected Frequencies are Subject to Linear Constraints. Metrika 64, 63–76 (2006). https://doi.org/10.1007/s00184-006-0034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-006-0034-2

Keywords

Navigation