Skip to main content
Log in

Learning vector quantization classifiers for ROC-optimization

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper proposes a variant of the generalized learning vector quantizer (GLVQ) optimizing explicitly the area under the receiver operating characteristics (ROC) curve for binary classification problems instead of the classification accuracy, which is frequently not appropriate for classifier evaluation. This is particularly important in case of overlapping class distributions, when the user has to decide about the trade-off between high true-positive and good false-positive performance. The model keeps the idea of learning vector quantization based on prototypes by stochastic gradient descent learning. For this purpose, a GLVQ-based cost function is presented, which describes the area under the ROC-curve in terms of the sum of local discriminant functions. This cost function reflects the underlying rank statistics in ROC analysis being involved into the design of the prototype based discriminant function. The resulting learning scheme for the prototype vectors uses structured inputs, i.e. ordered pairs of data vectors of both classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. To ensure convergence of SGDL one has to require that \(\sum _{t=1}^{\infty }\varepsilon \left( t\right) =\infty \), whereas \(\sum _{t=1}^{\infty }\varepsilon ^{2}\left( t\right) <\infty \) (Robbins and Monro 1951; Graf and Lushgy 2000). In practice, frequently the learning rate is set to be constant to a small positive value delivering also convergent behavior without loss of quality, i.e. \(\varepsilon \left( t\right) =\varepsilon \ll 1\) (Haykin 1994). If it is not declared otherwise we take this latter option.

  2. The algorithm is implemented in MATLABTM as the ROCGMLVQ-package (Vers. 1.7). It is available from the authors by personal request or via the webpage https://www.cb.hs-mittweida.de/webs/villmann/research/tools-data.html.

References

  • Ataman K, Street WN, Zhang Y (2006) Learning to rank by maximizing AUC with linear programming. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN). IEEE Press, pp 123–129

  • Baldi P, Brunak S, Chauvin Y, Andersen C, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5):412–424

    Article  Google Scholar 

  • Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  MATH  Google Scholar 

  • Berger JO (1993) Statistical decision theory and Bayesian analysis. Springer series in statistics, 3rd edn. Springer, New York

    Google Scholar 

  • Biehl M, Hammer B, Merényi E, Sperduti A, Villman T (2011) Learning in the context of very high dimensional data (Dagstuhl Seminar 11341). Dagstuhl Rep 1(8):67–95

    Google Scholar 

  • Biehl M, Kaden M, Stürmer P, Villmann T (2014) ROC-optimization and statistical quality measures in learning vector quantization classifiers. Mach Learn Rep, 8(MLR-01-2014):23–34, ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_01_2014.pdf

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  • Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Dep. of Information and Computer Science, Irvine. http://www.ics.edu/mlearn/MLRepository.html

  • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1149–1155

    Article  Google Scholar 

  • Brefeld U, Scheffer T (2005) AUC maximizing support vector learning. In: Proceedings of ICML 2005 workshop on ROC analysis in machine learning, pp 377–384

  • Calders T, Jaroszewicz S (2007) Efficient AUC optimization for classification. In: Kok JN, Koronacki J, de Mantaras R Lopez, Matwin S, Mladenic D, Skowron A (eds) Knowledge discovery in databases: PKDD 2007, volume 4702 of LNCS. Springer-Verlag, Berlin, pp 42–53

    Chapter  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector network. Mach Learn 20:1–20

    MATH  Google Scholar 

  • Crammer K, Gilad-Bachrach R, Navot A, Tishby A (2003) Margin analysis of the LVQ algorithm. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing (Proc. NIPS 2002), vol 15. MIT Press, Cambridge, pp 462–469

    Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Duda RO, Hart PE (1973) Pattern Classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  • Graf S, Lushgy H (2000) Foundations of quantization for random vectors. LNM-1730. Springer, Berlin

    Google Scholar 

  • Güvenir HA, Kurtcephe M (2013) Ranking instances by maximizing the area under ROC curve. IEEE Trans Knowl Data Eng 25(10):2356–2366

    Article  Google Scholar 

  • Hammer B, Strickert M, Villmann T (2005) On the generalization ability of GRLVQ networks. Neural Process Lett 21(2):109–120

    Article  Google Scholar 

  • Hammer B, Nebel D, Riedel M, Villmann T (2014) Generative versus discriminative prototype based classification. In: Villmann T, Schleif F-M, Kaden M, Lange M (eds) Advances in self-organizing maps and learning vector quantization: proceedings of 10th international workshop WSOM 2014, Mittweida, volume 295 of advances in intelligent systems and computing. Springer, Berlin, pp 123–132

    Chapter  Google Scholar 

  • Hammer B, Villmann T (2002) Generalized relevance learning vector quantization. Neural Netw 15(8–9):1059–1068

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic. Radiology 143:29–36

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1983) A method of comparing the area under receiver operating characteristic curves derived from the same case. Radiology 148(3):839–843

    Article  Google Scholar 

  • Haykin Simon (1994) Neural networks. A comprehensive foundation. Macmillan, New York

    MATH  Google Scholar 

  • Hermann W, Barthel H, Hesse S, Villmann Th, Wagner A (2002) Korrelation der motorisch evozierten Potentiale mit dem striatalen Glukosestoffwechsel bei Patienten mit einem Morbus Wilson. Aktuelle Neurol 5:242–246

    Article  Google Scholar 

  • Hermann W, Barthel H, Hesse S, Grahmann F, Kühn H-J, Wagner A, Villmann Th (2002) Comparison of clinical types of Wilson’s disease and glucose metabolism in extrapyramidal motor brain regions. J Neurol 249(7):896–901

    Article  Google Scholar 

  • Hermann W, Villmann Th, Grahmann F, Kühn HJ, Wagner A (2003) Investigation of fine motoric disturbances in Wilson’s disease. Neurol Sci 23(6):279–285

    Article  Google Scholar 

  • Herschtal A, Raskutti B (2004) Optimising area under the ROC curve using gradient descent. In: Proceedings of the 21st international conference on machine learning. Banff, pp 49–56

  • Huaichun W, Dopazo J, Carazo JM (1998) Self-organizing tree growing network for classifying amino acids. Bioinformatics 14(4):376–377

    Article  Google Scholar 

  • Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

    Article  Google Scholar 

  • Kaden M, Hermann W, Villmann T (2014) Optimization of general statistical accuracy measures for classification based on learning vector quantization. In: Verleysen M (ed) Proceedings of European symposium on artificial neural networks, computational intelligence and machine learning (ESANN’2014). Louvain-La-Neuve, Belgium, pp 47–52

    Google Scholar 

  • Kaden M, Lange M, Nebel D, Riedel M, Geweniger T, Villmann T (2014) Aspects in classification learning—review of recent developments in learning vector quantization. Found Comput Decis Sci 39(2):79–105

    MathSciNet  MATH  Google Scholar 

  • Kaden M, Riedel M, Hermann W, Villmann T (2015) Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines. Soft Comput 19(9):2423–2434

    Article  Google Scholar 

  • Kästner M, Riedel M, Strickert M, Hermann W, Villmann T (2013) Border-sensitive learning in kernelized learning vector quantization. In: Rojas I, Joya G, Cabestany J (eds) Proceedings of the 12th international workshop on artificial neural networks (IWANN), volume 7902 of LNCS. Springer, Berlin, pp 357–366

    Google Scholar 

  • Keilwagen J, Grosse I, Grau J (2014) Area under precision-recall curves for weighted and unweighted data. PLos One 9(3):1–13

    Article  Google Scholar 

  • Kohonen T (1990) Improved versions of learning vector quantization. In: Proceedings of IJCNN-90, international joint conference on neural networks, vol I. Piscataway, IEEE Service Center, San Diego, pp 545–550

  • Kohonen Teuvo (1986) Learning vector quantization for pattern recognition. Report TKK-F-A601, Helsinki University of Technology, Espoo

  • Kohonen T (1988) Learning vector quantization. Neural Netw 1(Supplement 1):303

    Google Scholar 

  • Kohonen T (1992) Learning-vector quantization and the self-organizing map. In: Taylor JG, Mannion CLT (eds) Theory and applications of neural networks. Springer, London, pp 235–242

    Chapter  Google Scholar 

  • Kohonen Teuvo (1995) Self-organizing maps, volume 30 of Springer series in information sciences. Springer, Berlin, Heidelberg (Second Extended Edition 1997)

    Google Scholar 

  • Landgrebe TCW, Tax D, Paclìk P, Duin RPW (2006) The interaction between classification and reject performance for distance-based reject-option classifiers. Pattern Recogn Lett 27:908–917

    Article  Google Scholar 

  • Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L (2005) The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inf 38:404–415

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition., Wiley series in probability and mathematical statistics: applied probability and statisticsWiley, New York

    Book  MATH  Google Scholar 

  • Mitchell T (1997) Machine learning. mcgraw hill, New York

    MATH  Google Scholar 

  • Nebel D, Villmann T (2015) Median-LVQ for classification of dissimilarity data based on ROC-optimization. In: Verleysen M (ed) Proceedings of the European symposium on artifical neural networks, computational intelligence and machine learning (ESANN’2015). Louvain-La-Neuve, Belgium, pp 1–6

    Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Rakotomamonjy A (2004) Optimizing area under ROC curve with SVMs. In: Proceedings of the workshop on ROC analysis in artificial intelligence, Hamburg, pp 71–80

  • Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworths, London

    MATH  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22:400–407

    Article  MathSciNet  MATH  Google Scholar 

  • Sachs L (1992) Angewandte Statistik, 7th edn. Springer Verlag, Berlin

    Book  MATH  Google Scholar 

  • Santos-Pereira CM, Pires AM (2005) On optimal reject rules and ROC curves. Pattern Recogn Lett 26:943–952

    Article  Google Scholar 

  • Sato A, Yamada K (1996) Generalized learning vector quantization. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems 8. Proceedings of the 1995 conference. MIT Press, Cambridge, pp 423–429

    Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  • Schneider P, Hammer B, Biehl M (2009) Adaptive relevance matrices in learning vector quantization. Neural Comput 21:3532–3561

    Article  MathSciNet  MATH  Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge

    MATH  Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis and discovery. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Steinwart I (2001) On the influence of the kernel on the consistency of support vector machines. J Mach Learn Res 2:67–93

    MathSciNet  MATH  Google Scholar 

  • Strickert M, Schleif F-M, Seiffert U, Villmann T (2008) Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 37:37–44

    Google Scholar 

  • Strickert M, Keilwagenan J, Schleif F-M, Villmann T, Biehl M (2009) Matrix metric adaptation linear discriminant analysis of biomedical data. In: Cabestany J et al (eds) Proceedings international workshop on artificial neural networks (IWANN) 2009, volume 5517 of LNCS. Springer, Heidelberg, pp 933–940

    Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  • Villmann T, Haase S, Kaden M (2015) Kernelized vector quantization in gradient-descent learning. Neurocomputing 147:83–95

    Article  Google Scholar 

  • Villmann T, Kaden M, Nebel D, Biehl M (2015) Learning vector quantization with adaptive cost-based outlier-rejection. In: Azzopardi G, Petkov N (eds) Proceedings of 16th international conference on computer analysis of images and pattern, CAIP 2015, Valetta-Malta, volume Part II of LNCS 9257. Springer, Berlin, Heidelberg, pp 772–782

    Google Scholar 

  • Villmann T, Kaden M, Bohnsack A, Saralajew S, Villmann J-M, Drogies T, Hammer B (2016) Self-adjusting reject options in prototype based classification. In: Merényi E, Mendenhall MJ, O’Driscoll P (eds) Advances in self-organizing maps and learning vector quantization: proceedings of 11th international workshop WSOM 2016, volume 428 of advances in intelligent systems and computing. Springer, Berlin, Heidelberg, pp 269–279

    Chapter  Google Scholar 

  • Villmann T, Schleif F-M, Kaden M, Lange M (eds) (2014) Advances in self-organizing maps and learning vector quantization - proceedings of the 10th international workshop, WSOM 2014, Mittweida. Number 295 in Advances in intelligent systems and computing. Springer, Heidelberg

  • Wilcoxon F (1945) Andividual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  • Yan L, Dodier R, Mozer MC, Wolniewicz R (2003) Optimizing classifier performance via approximation to the Wilcoxon–Mann–Witney statistics. In: Proceedings of the 20th international conference on machine learning. AAAI Press, Menlo Park, pp 848–855

  • Yu G, Russell W, Schwartz R, Makhoul J (1990) Discriminant analysis and supervised vector quantization for continuous speech recognition. In: ICASSP-90, international conference on acoustics, speech and signal processing, volume II, pp 685–688, Piscataway. IEEE, IEEE Service Center

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Villmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villmann, T., Kaden, M., Hermann, W. et al. Learning vector quantization classifiers for ROC-optimization. Comput Stat 33, 1173–1194 (2018). https://doi.org/10.1007/s00180-016-0678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0678-y

Keywords

Navigation