Skip to main content
Log in

Design of a neuro-fuzzy–regression expert system to estimate cost in a flexible jobshop automated manufacturing system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We propose a cost estimation model based on a fuzzy rule backpropagation network, configuring the rules to estimate the cost under uncertainty. A multiple linear regression analysis is applied to analyze the rules and identify the effective rules for cost estimation. Then, using a dynamic programming approach, we determine the optimal path of the manufacturing network. Finally, an application of this model is illustrated through a numerical example showing the effectiveness of the proposed model for solving the cost estimation problem under uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdi H, Valentin D, Edelman B, O’Toole AJ (1996) A Widrow–Hoff learning rule for a generalization of the linear auto-associator. J Math Psychol 40:175–182

    Article  MATH  Google Scholar 

  2. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  3. Bellman R (2003) Dynamic programming. Dover Publications, New York

    MATH  Google Scholar 

  4. Ben-Arieh D, Qian L (2003) Activity-based cost management for design and development stage. Int J Prod Econ 83:169–183

    Article  Google Scholar 

  5. Cavalieria S, Maccarroneb P, Pinto R (2004) Parametric vs. neural network models for the estimation of production costs: a case study in the automotive industry. Int J Prod Econ 91:165–177

    Article  Google Scholar 

  6. Cheng B, Titterington DM (1994) Neural networks: a review from a statistical perspective. Stat Sci 9(1):2–30

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai JB, Lee NKS (2012) Economic feasibility analysis of flexible material handling systems: a case study in the apparel industry. Int J Prod Econ 136(1):28–36

    Article  Google Scholar 

  8. Deng S, Yeh T-H (2011) Using least squares support vector machines for the airframe structures manufacturing cost estimation. Int J Prod Econ 131(2):701–708

    Article  Google Scholar 

  9. Dreyfus SE, Law AM (1977) The art and theory of dynamic programming. Academic, New York

    MATH  Google Scholar 

  10. Dvir D, Ben-Davidb A, Sadehb A, Shenhar AJ (2006) Critical managerial factors affecting defense projects success: a comparison between neural network and regression analysis. Eng Appl Artif Intel 19:535–543

    Article  Google Scholar 

  11. Feng C-X, Wang V (2002) Surface roughness predictive modeling: neural networks versus regression. IIE Trans Des Manuf 40(3):683–697

    MATH  Google Scholar 

  12. Feng C-X, Wang X (2002) Digitizing uncertainty modeling for reverse engineering applications: regression versus neural networks. J Intell Manuf 13(3):189–199

    Article  Google Scholar 

  13. Finnie GR, Wittig GE, Desharnais J-M (1997) A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models. J Syst Softw 39(3):281–289

    Article  Google Scholar 

  14. Gallinari P, Thiria S, Badran F, Fogelman-Soulie F (1991) On the relations between discriminant analysis and multilayer perceptrons. Neural Netw 4(3):349–360

    Article  Google Scholar 

  15. Gayretli A, Abdalla HS (1999) A featured based prototype system for the evaluation and optimization of manufacturing processes. Comput Ind Eng 37:481–484

    Article  Google Scholar 

  16. Ghasemzadeh S, Behrangi E, Azgomi MA (2009) Conflict-free scheduling and routing of automated guided vehicles in mesh topologies. Robot Auton Syst 30:738–748

    Article  Google Scholar 

  17. Heiat A (2002) Comparison of artificial neural network and regression models for estimating software development effort. Inf Softw Technol 44(15):911–922

    Article  Google Scholar 

  18. Ibaraki T (1987) Enumerative approaches to combinatorial optimization—part II. Ann Oper Res 11:397–439

    Article  Google Scholar 

  19. Khayat GE, Lagevin A, Riopel D (2006) Integrated production and material handling scheduling using mathematical programming and constraint programming. Eur J Oper Res 175:1818–1832

    Article  MATH  Google Scholar 

  20. Kim G-H, An S-H, Kang K-I (2004) Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Build Environ 39(10):1235–1242

    Article  Google Scholar 

  21. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, US

  22. Krishnaswamy M, Krishnan P (2002) Nozzle wear rate prediction using regression and neural network. Biosyst Eng 82(1):53–64

    Article  Google Scholar 

  23. Lee J, Um K (2000) A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network. Opt Lasers Eng 34(3):149–158

    Article  Google Scholar 

  24. Marsten RE, Morin TL (1978) A hybrid approach to discrete mathematical programming. Math Program 14:21–40

    Article  MathSciNet  MATH  Google Scholar 

  25. Martello S, Pisinger D, Toth P (1999) New trends in exact algorithms for the 0–1 knapsack problem. Eur J Oper Res 123:325–336

    Article  MathSciNet  Google Scholar 

  26. McKim RA (1993) Neural network applications to cost engineering. Cost Eng 35:31–35

    Google Scholar 

  27. Niazi A, Dai JS, Balabani S, Seneviratne L (2006) Product cost estimation: technique classification and methodology review. J Manuf Sci Eng 128:563–575

    Article  Google Scholar 

  28. Nolan A (1998) An intelligent system for case review and risk assessment in social services. AI Mag 19(1):39–46

    Google Scholar 

  29. Pendharkar PC (2006) Scale economies and production function estimation for object-oriented software component and source code documentation size. Eur J Oper Res 172:1040–1050

    Article  MATH  Google Scholar 

  30. Plateau G, Elkihel M (1985) A hybrid method for the 0–1 knapsack problem. Meth Oper Res 49:277–293

    MathSciNet  MATH  Google Scholar 

  31. Quintana G, Ciurana J (2011) Cost estimation support tool for vertical high speed machines based on product characteristics and productivity requirements. Int J Prod Econ 134(1):188–195

    Article  Google Scholar 

  32. Rehman S, Guenov MD (1998) A methodology for modeling manufacturing costs at conceptual design. Comput Ind Eng 35:623–626

    Article  Google Scholar 

  33. Ripley BD (1994) Neural networks and related methods for classification. J Roy Stat Soc B (Methodological) 56(3):409–456

    MathSciNet  MATH  Google Scholar 

  34. Roy R, Souchoroukov P, Shehab E (2011) Detailed cost estimating in the automotive industry: data and information requirements. Int J Prod Econ 133(2):694–707

    Article  Google Scholar 

  35. Sarle WS (1994) Neural networks and statistical models. In Proceedings of the 19th annual SAS users group international conference, pp. 215–221

  36. Schumacher M, Robner R, Vach W (1996) Neural networks and logistic regression: part I. Comput Stat Data Anal 21(6):661–682

    Article  MATH  Google Scholar 

  37. Setyawati BR, Sahirman S, Creese RC (2002) Neural networks for cost estimation. AACE Int Trans EST13:13.1–13.8

    Google Scholar 

  38. Shehab EM, Abdalla HS (2001) Manufacturing cost modeling for concurrent product development. Robot Comput Integrated Manuf 17:341–353

    Article  Google Scholar 

  39. Shuhui L, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Sol Energ Eng 123:327–332

    Article  Google Scholar 

  40. Smith AE, Mason AK (1997) Cost estimation predictive modeling: regression versus neural network. Eng Econ 42(2):137–161

    Article  Google Scholar 

  41. Toth P (1980) Dynamic programming algorithms for the zero–one knapsack problem. Computing 25:29–45

    Article  MathSciNet  MATH  Google Scholar 

  42. Turban E, Aronson J (1998) Decision support systems and intelligent systems. Prentice-Hall, London

    Google Scholar 

  43. Vach W, Robner R, Schumacher M (1996) Neural networks and logistic regression: part II. Comput Stat Data Anal 21(6):683–701

    Article  MATH  Google Scholar 

  44. Vis IFA (2006) Survey of research in the design and control of automated guided vehicle systems. Eur J Oper Res 170:677–709

    Article  MATH  Google Scholar 

  45. Vrbsky SV (1997) A data model for approximate query processing of real time database. Data Knowl Eng 21:79–102

    Article  Google Scholar 

  46. Warner B, Misra M (1996) Understanding neural networks as statistical tools. Am Stat 50(4):284–293

    Google Scholar 

  47. Weiss N, Kulikowski I (1991) Computer systems that learn. Morgan- Kaufman, California

    Google Scholar 

  48. Wu N, Zhou M (2005) Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles. IEEE Trans Syst Man Cybern B 35:1193–1201

    Article  Google Scholar 

  49. Yang CO, Lin TS (1997) Developing an integrated framework for feature-based early manufacturing cost estimation. Int J Adv Manuf Technol 13:618–629

    Article  Google Scholar 

  50. Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  51. Zhengrong G, Lam LH, Dhurjati PS (1996) Feature correlation method for enhancing fermentation development: a comparison of quadratic regression with artificial neural networks. Comput Chem Eng 20(Supp 1):S407–S412

    Google Scholar 

  52. Zimmermann HJ (1996) Fuzzy set theory and its applications, 3rd edn. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Fazlollahtabar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazlollahtabar, H., Mahdavi-Amiri, N. Design of a neuro-fuzzy–regression expert system to estimate cost in a flexible jobshop automated manufacturing system. Int J Adv Manuf Technol 67, 1809–1823 (2013). https://doi.org/10.1007/s00170-012-4610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4610-5

Keywords

Navigation