Skip to main content
Log in

Geometric decomposition of 3D surface meshes using Morse theory and region growing

The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm for decomposition (segmentation) of surfaces using curvature labeling, Morse theory, and region growing technologies. The geometric properties are estimated on triangular meshes and all mesh elements (vertices and triangles) are labeled with different surface types. The surface decomposition method proposed consists of two steps: initial segmentation and refinement. The initial segmentation is performed by grouping the topologically adjacent mesh elements with the same surface type using the region growing technique. A Morse function is then defined based on the smoothed curvatures using bilateral filtering to extract the critical points of a triangular surface mesh. The final segmentation is obtained by a combination of the steepest ascent/descent strategy and region growing technique. The experimental results on many 3D models, particularly molecular surfaces, have demonstrated the effectiveness and robustness of the proposed segmentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Agathos A, Pratikakis I, Perantonis S, Sapidis N, Azariadis P (2007) 3D mesh segmentation methodologies for CAD applications. Comput Aided Des Appl 4(6):827–841

    Google Scholar 

  2. Rustamov, R (2009) On mesh editing, manifold learning, and diffusion wavelets. In: IMA Conference on the Mathematics of Surfaces, pp 307–321

  3. Benko P, Varady T (2004) Segmentation methods for smooth point regions of conventional engineering objects. Comput Aided Des 36(6):511–523

    Article  Google Scholar 

  4. Gelfand N, Guibas LJ (2004) Shape segmentation using local slippage analysis. In: Eurographics Symposium on Geometric Processing, pp. 214–223

  5. Karni Z, Gotsman C (2000) Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH, pp. 279–286

  6. Zuckerberger E, Tal A, Shlafman S (2002) Polyhedral surface decomposition with applications. Comput Graph 26(5):733–743

    Article  Google Scholar 

  7. Wang H, Oliensis J (2008) Shape matching by segmentation averaging. Lect Notes Comput Sci 5302:562–575

    Article  Google Scholar 

  8. Gregory A, State A, Lin M, Manocha D, Livingston M (1999) Interactive surface decomposition for polyhedral morphing. Vis Comput 15:453–470

    Article  Google Scholar 

  9. Zockler M, Stalling D, Hege HC (2000) Fast and intuitive generation of geometric shape transitions. Vis Comput 16(5):241–253

    Article  Google Scholar 

  10. Li X, Toon T, Tan T, Huang Z (2001) Decomposing polygon meshes for interactive applications. In: Proceedings of the symposium on Interactive 3D graphics, pp. 35–42

  11. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–961

    Article  Google Scholar 

  12. Levy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH, pp. 362–371

  13. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27(6):1539–1556

    Article  MATH  Google Scholar 

  14. Attene M, Katz S, Mortara M, Patane G, Spagnuolo M, Tal A (2006) Mesh segmentation - a comparative study. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 14–25

  15. Besl PJ, Jain R (1998) Segmentation through variable-order surface fitting. IEEE PAMI 10(2):167–192

    Article  Google Scholar 

  16. Falcidieno B, Spagnuolo M (1992) Polyhedral surface decomposition based on curvature analysis. In: Kunii TL, Shinagawa Y (eds) Modern geometric computing for visualization. Springer, New York, pp 57–72

    Google Scholar 

  17. Sapidis N, Besl P (1995) Direct construction of polynomial surfaces from dense range images through region growing. ACM Trans Graph 14(2):171–200

    Article  Google Scholar 

  18. Srinark T, Kambhamettu C (2003) A novel method for 3D surface mesh segmentation. In: Proceedings of the 6th Intl. Conf. on Computers, Graphics and Imaging, pp. 212–217

  19. Lavoué G, Dupont F, Baskurt A (2004) Curvature tensor based triangle mesh segmentation with boundary rectification. In: IEEE Computer Graphics International, pp. 10–17

  20. Mangan AP, Whitaker RT (1999) Partitioning 3D surface meshes using watershed segmentation. IEEE Trans Vis Comput Graph 5(4):308–321

    Article  Google Scholar 

  21. Page DL, Koschan A, Abidi M (2003) Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. of Computer Vision and Pattern Recognition, pp. 27–32

  22. Garland M, Willmott A, Heckbert P (2001) Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 49–58

  23. Shlafman S, Tal A, Katz S (2002) Metamorphosis of polyhedral surfaces using decomposition. In: Eurographics, pp. 219–228

  24. Attene M, Falcidieno B, Spagnuolo M (2006) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22(3):181–193

    Article  Google Scholar 

  25. Zhou Y, Huang Z (2004) Decomposing polygon meshes by means of critical points. In: MMM, pp. 187–195

  26. Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21(8–10):865–875

    Google Scholar 

  27. Natarajan V, Wang Y, Bremer PT, Pascucci V, Hamann B (2006) Segmenting molecular surfaces. Comput Aided Geom Des 23(6):495–509

    Article  MathSciNet  MATH  Google Scholar 

  28. Lien JM, Keyser J, Amato NM (2006) Simultaneous shape decomposition and skeletonization. In: Proceedings of ACM Solid and Physical Modeling Symposium, pp. 219–228

  29. Lai Y, Zhou Q, Hu S, Martin RR (2006) Feature sensitive mesh segmentation. In: Proceedings of the 2006 ACM symposium on Solid and physical modeling, pp. 17–25

  30. Berretti S, Bimbo AD, Pala P (2006) Partitioning of 3D meshes using reeb graphs. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 19–22

  31. Antini G, Berretti S, Bimbo AD, Pala P (2005) 3D Mesh partitioning for retrieval by parts applications. In: Proc. IEEE International Conference on Multimedia & Expo, pp. 1210–1213

  32. Meyer M, Desbrun M, Schroder P, Barr A (2002) Discrete differential geometry operators for triangulated two-manifolds. In: Hege H-C, Poltheir K (eds) Visualization and mathematics, vol 3. Springer, Berlin, pp 34–57

    Google Scholar 

  33. Taubin G (1995) Estimating the tensor of curvature of a surface from a polyhedra approximation. In: ICCV, pp. 902–907

  34. Hamann B (1993) Curvature approximation for triangulated surfaces, geometric modeling. Springer, London

    Google Scholar 

  35. Goldfeather J, Interrante V (2004) A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans Graph 23(1):45–63

    Article  Google Scholar 

  36. Razdan A, Bae M (2005) Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Comput Aid Des 37(14):1481–1491

    Article  MATH  Google Scholar 

  37. Clarkson KL (1983) Fast algorithm for the all nearest neighbors problem. In: Proceedings of the 24th IEEE Annual Symposium on Foundations of Computer Science, pp. 226–232

  38. Milnor J (1963) Morse theory. Princeton Univ. Press, Princeton, NJ

    MATH  Google Scholar 

  39. Matsumoto Y (2002) An introduction to Morse theory. Amer. Math. Soc. Translated from Japanese by K. Hudson and M. Saito. Providence, RI: AMS

  40. Banchoff TF (1970) Critical points and curvature for embedded polyhedral surfaces. Amer Math Monthly 77(5):475–485

    Article  MathSciNet  MATH  Google Scholar 

  41. Goresky M, MacPherson R (1988) Stratified Morse theory. Springer, Heidelberg

    MATH  Google Scholar 

  42. Bremer PT, Edelsbrunner H, Hamann B, Pascucci V (2004) A topological hierarchy for functions on triangulated surfaces. IEEE Trans Vis Comput Graph 10(4):385–396

    Article  Google Scholar 

  43. Hilaga M, Shinagawa Y, Komura T, Kunii TL (2001) Topology matching for full automatic similarity estimation of 3d shapes. In: Proceedings of SIGGRAPH, pp. 203–212

  44. Ni X, Garland M, Hart JC (2004) Fair Morse functions for extracting the topological structure of a surface mesh. In: Proc. of SIGGRAPH, pp. 613–622

  45. Liu Y, Liu M, Kihara D, Ramani K (2007) Salient critical points for meshes. In: Proceedings of the 2007 ACM symposium on Solid and Physical Modeling, pp. 277–282

  46. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proc. Sixth Int'l Conf. Computer Vision, pp. 839–846

  47. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu Z (2009) A list-based method for fast generation of molecular surfaces. In: Proceedings of the 31st Int’l Conf. of IEEE Engineering in Medicine and Biology Society, pp. 5909–5912

  49. Wang J, Yu Z (2009) A novel method for surface mesh smoothing: applications in biomedical modeling. In: Proceedings of the 18th International Meshing Roundtable, pp. 195–210

  50. Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonization using the shape diameter function. Vis Comput 24(4):249–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yu, Z. Geometric decomposition of 3D surface meshes using Morse theory and region growing. Int J Adv Manuf Technol 56, 1091–1103 (2011). https://doi.org/10.1007/s00170-011-3259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3259-9

Keywords

Navigation