Skip to main content
Log in

New insights into anterior cruciate ligament deficiency and reconstruction through the assessment of knee kinematic variability in terms of nonlinear dynamics

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Injuries to the anterior cruciate ligament (ACL) occur frequently, particularly in young adult athletes, and represent the majority of the lesions of knee ligaments. Recent investigations suggest that the assessment of kinematic variability using measures of nonlinear dynamics can provide with important insights with respect to physiological and pathological states. The purpose of the present article was to critically review and synthesize the literature addressing ACL deficiency and reconstruction from a nonlinear dynamics standpoint.

Methods

A literature search was carried out in the main medical databases for studies published between 1990 and 2010.

Results

Seven studies investigated knee kinematic variability in ACL patients. Results provided support for the theory of “optimal movement variability”. Practically, loss below optimal variability is associated with a more rigid and very repeatable movement pattern, as observed in the ACL-deficient knee. This is a state of low complexity and high predictability. On the other hand, increase beyond optimal variability is associated with a noisy and irregular movement pattern, as found in the ACL-reconstructed knee, regardless of which type of graft is used. This is a state of low complexity and low predictability. In both cases, the loss of optimal variability and the associated high complexity lead to an incapacity to respond appropriately to the environmental demands, thus providing an explanation for vulnerability to pathological changes following injury.

Conclusion

Subtle fluctuations that appear in knee kinematic patterns provide invaluable insight into the health of the neuromuscular function after ACL rupture and reconstruction. It is thus critical to explore them in longitudinal studies and utilize nonlinear measures as an important component of post-reconstruction medical assessment.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

    Book  Google Scholar 

  2. Amato I (1992) Chaos breaks out at NIH, but order may come of it. Science 256:1763–1764

    Article  PubMed  CAS  Google Scholar 

  3. Baillie RT, Cecen AA, Erkal C (2009) Normal heartbeat series are nonchaotic, nonlinear, and multifractal: new evidence from semiparametric and parametric tests. Chaos 19:028503

    Article  PubMed  Google Scholar 

  4. Barrance PJ, Williams GN, Snyder-Mackler L, Buchanan TS (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24:132–140

    Article  PubMed  Google Scholar 

  5. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior crutiate ligament. J Bone Joint Surg Am 72:871–877

    PubMed  CAS  Google Scholar 

  6. Bernstein NA (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  7. Bruijn SM, van Dieen JH, Meijer OG, Beek PJ (2009) Statistical precision and sensitivity of measures of dynamic gait stability. J Neurosci Meth 178:327–333

    Article  Google Scholar 

  8. Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J (2003) Nonlinear dynamics indicates aging affects variability during gait. Clin Biomech 18:435–443

    Article  Google Scholar 

  9. Buzzi UH, Ulrich BD (2004) Dynamic stability of gait cycles as a function of speed and system constraints. Mot Control 8:241–254

    Google Scholar 

  10. Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74

    Article  PubMed  Google Scholar 

  11. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  PubMed  CAS  Google Scholar 

  12. Devita P, Hortobagyi T, Barrier J, Torry M, Glover KL, Speroni DL, Money J, Mahar MT (1997) Gait adaptations before and after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc 29:853–859

    Article  PubMed  CAS  Google Scholar 

  13. Di Fabio RP, Graf B, Badke MB, Breunig A, Jensen K (1992) Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res 90:189–200

    PubMed  CAS  Google Scholar 

  14. Dingwell J, Robb R, Troy K, Grabiner M (2008) Effects of an attention-demanding task on dynamic stability during treadmill walking. J Neuroeng Rehabil 5:12

    Article  PubMed  Google Scholar 

  15. Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863

    Article  PubMed  Google Scholar 

  16. Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 123:27–32

    Article  PubMed  CAS  Google Scholar 

  17. Dingwell JB, Cusumano JP, Sternad D, Cavanagh PR (2000) Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech 33:1269–1277

    Article  PubMed  CAS  Google Scholar 

  18. Dingwell JB, Marin LC (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452

    Article  PubMed  Google Scholar 

  19. Dyhre-Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195

    PubMed  CAS  Google Scholar 

  20. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2004) Bilateral accommodations to anterior cruciate ligament deficiency and surgery. Clin Biomech (Bristol, Avon) 19:136–144

    Article  Google Scholar 

  21. Ferrario M, Magenes G, Campanile M, Carbone IF, Di Lieto A, Signorini MG (2009) Multiparameter analysis of heart rate variability signal for the investigation of high risk fetuses. Conf Proc IEEE Eng Med Biol Soc 2009:4662–4665

    PubMed  Google Scholar 

  22. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  PubMed  Google Scholar 

  23. Fujita I, Nishikawa T, Kambic HE, Andrish JT, Grabiner MD (2000) Characterization of hamstring reflexes during anterior cruciate ligament disruption: in vivo results from a goat model. J Orthop Res 18:183–189

    Article  PubMed  CAS  Google Scholar 

  24. Gates DH, Dingwell JB (2009) Comparison of different state space definitions for local dynamic stability analyses. J Biomech 42:1345–1349

    Article  PubMed  Google Scholar 

  25. Georgoulis AD, Moraiti C, Ristanis S, Stergiou N (2006) A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: the use of the approximate entropy in orthopaedics. J Clin Monit Comput 20:11–18

    Article  PubMed  Google Scholar 

  26. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79

    PubMed  Google Scholar 

  27. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  28. Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284

    Article  PubMed  CAS  Google Scholar 

  29. Glass L (2009) Introduction to controversial topics in nonlinear science: is the normal heart rate chaotic? Chaos 19:028501

    Article  PubMed  Google Scholar 

  30. Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton, NJ

    Google Scholar 

  31. Gleick J (1987) Chaos: making a new science. Viking Penguin, Inc., New York

    Google Scholar 

  32. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals and complexity at the bedside. Lancet 347:1312–1314

    Article  PubMed  CAS  Google Scholar 

  33. Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40:543–561

    PubMed  CAS  Google Scholar 

  34. Goldberger AL, Amaral LA, Hausdorff JM, PCh Ivanov, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99:2466–2472

    Article  PubMed  Google Scholar 

  35. Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractals in human physiology. Sci Am 262:42–49

    Article  PubMed  CAS  Google Scholar 

  36. Griffith TM, Edwards DH (1994) EDRF suppresses chaotic pressure oscillations in isolated resistance artery without influencing intrinsic complexity. Am J Physiol 266:H1786–H1800

    PubMed  CAS  Google Scholar 

  37. Griffith TM, Edwards DH (1994) Fractal analysis of role of smooth muscle Ca2 + fluxes in genesis of chaotic arterial pressure oscillations. Am J Physiol 266:H1801–H1811

    PubMed  CAS  Google Scholar 

  38. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, Goldberger AL (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82:262–269

    PubMed  CAS  Google Scholar 

  39. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J Appl Physiol 78:349–358

    PubMed  CAS  Google Scholar 

  40. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 80:1448–1457

    PubMed  CAS  Google Scholar 

  41. Hawkins RJ, Misamore GW, Merritt TR (1986) Follow-up of the acute non-operative isolated anterior cruciate ligament tear. Am Sports Med 14:205–210

    Article  CAS  Google Scholar 

  42. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32:1472–1479

    Article  PubMed  CAS  Google Scholar 

  43. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2004) Hamstrings and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects. Clin J Sport Med 14:274–280

    Article  PubMed  Google Scholar 

  44. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2007) Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech (Bristol, Avon) 22:543–550

    Article  Google Scholar 

  45. Hong SL (2007) The dynamics of structural and functional complexity across the lifespan. Nonlin Dyn Psychol Life Sci 11:219–234

    Google Scholar 

  46. Johansson H, Sjölander P, Sojka P (1990) Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurosci Res 8:54–59

    Article  PubMed  CAS  Google Scholar 

  47. Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop 268:161–178

    PubMed  Google Scholar 

  48. Johnson R (1983) The anterior cruciate ligament problem. Clin Orthop Relat Res 172:14–18

    PubMed  Google Scholar 

  49. Kannus P, Järvinen M (1987) Conservatively treated tears of the anterior cruciate ligament: long term results. J Bone Joint Surg Am 69:1007–1012

    PubMed  CAS  Google Scholar 

  50. Kantz H, Schreiber S (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  51. Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59:945–949

    Article  PubMed  CAS  Google Scholar 

  52. Kapreli E, Athanasopoulos S (2006) The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses 67:645–650

    Article  PubMed  Google Scholar 

  53. Karmakar CK, Khandoker AH, Begg RK, Palaniswami M, Taylor S (2007) Understanding ageing effects by approximate entropy analysis of gait variability. Conf Proc IEEE Eng Med Biol Soc 2007:1965–1968

    PubMed  Google Scholar 

  54. Katsavelis D, Mukherjee M, Decker L, Stergiou N (2010) Variability of lower extremity joint kinematics during backward walking in a virtual environment. Nonlin Dyn Psychol Life Sci 14:165–178

    Google Scholar 

  55. Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase space-reconstruction using a geometrical construction. Phys Rev A 45:3403–3411

    Google Scholar 

  56. Khalsa PS, Grigg P (1996) Responses of mechanoreceptor neurons in the cat knee joint capsule before and after anterior cruciate ligament transection. J Orthop Res 14:114–122

    Article  PubMed  CAS  Google Scholar 

  57. Khandoker AH, Palaniswami M, Begg RK (2008) A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil 5:4

    Article  PubMed  Google Scholar 

  58. Kobayashi M, Musha T (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 29:456–457

    Article  PubMed  CAS  Google Scholar 

  59. Kurz MJ, Hou JG (2010) Levodopa influences the regularity of the ankle joint kinematics in individuals with Parkinson’s disease. J Comput Neurosci 28:131–136

    Article  PubMed  Google Scholar 

  60. Kurz MJ, Stergiou N (2005) An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biol Cybern 93:213–221

    Article  PubMed  Google Scholar 

  61. Kurz MJ, Stergiou N (2007) Do horizontal propulsive forces influence the nonlinear structure of locomotion? J Neuroeng Rehabil 15:4–30

    Google Scholar 

  62. Kurz MJ, Stergiou N (2007) Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model. J Biomech Eng 129:216–222

    Article  PubMed  Google Scholar 

  63. Liebovitch LS, Todorov AT, Zochowski M, Scheurle D, Colgin L, Wood MA, Ellenbogen KA, Herre JM, Bernstein RC (1999) Nonlinear properties of cardiac rhythm abnormalities. Phys Rev E 59:3312–3319

    Article  CAS  Google Scholar 

  64. Lipsitz LA (2002) Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57:B115–B125

    Article  PubMed  Google Scholar 

  65. Lipsitz LA (2004) Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ pe16

  66. Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809

    Article  PubMed  CAS  Google Scholar 

  67. Lockhart TE, Liu J (2008) Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics 51:1860–1872

    Article  PubMed  Google Scholar 

  68. Lu S, Chen X, Kanters JK, Solomon IC, Chon KH (2008) Automatic selection of the threshold value R for approximate entropy. IEEE Trans Biomed Eng 55:1966–1972

    Article  PubMed  Google Scholar 

  69. Manor B, Li L (2009) Characteristics of functional gait among people with and without peripheral neuropathy. Gait Posture 30:253–256

    Article  PubMed  Google Scholar 

  70. Marans HJ, Jackson RW, Glossop ND, Young C (1989) Anterior cruciate ligament insufficiency: a dynamical three dimensional motion analysis. Am J Sports Med 17:325–332

    Article  PubMed  CAS  Google Scholar 

  71. McDaniel WJ Jr, Dameron TB Jr (1980) Untreated ruptures of the anterior cruciate ligament. A follow-up study. J Bone Joint Surg Am 62:696–705

    PubMed  Google Scholar 

  72. Miller DJ, Stergiou N, Kurz MJ (2006) An improved surrogate method for detecting the presence of chaos in gait. J Biomech 39:2873–2876

    Article  PubMed  Google Scholar 

  73. Miyasaka KC, Daniel DM, Stone ML, Hirshman P (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3–8

    Google Scholar 

  74. Moksnes H, Snyder-Mackler L, Risberg MA (2008) Individuals with an anterior cruciate ligament-deficient knee classified as noncopers may be candidates for nonsurgical rehabilitation. J Orthop Sports Phys Ther 38:586–595

    PubMed  Google Scholar 

  75. Moraiti C, Stergiou N, Ristanis S, Georgoulis AD (2007) ACL deficiency affects stride-to-stride variability as measured using nonlinear methodology. Knee Surg Sports Traumatol Arthrosc 15:1406–1413

    Article  PubMed  Google Scholar 

  76. Moraiti CO, Stergiou N, Ristanis S, Vasiliadis HS, Patras K, Lee C, Georgoulis AD (2009) The effect of anterior cruciate ligament reconstruction on stride-to-stride variability. Arthroscopy 25:742–749

    Article  PubMed  Google Scholar 

  77. Moraiti CO, Stergiou N, Vasiliadis HS, Motsis E, Georgoulis A (2010) Anterior cruciate ligament reconstruction results in alterations in gait variability. Gait Posture 32:169–175

    Article  PubMed  Google Scholar 

  78. Myers SA, Johanning JM, Stergiou N, Celis RI, Robinson L, Pipinos II (2009) Gait variability is altered in patients with peripheral arterial disease. J Vasc Surg 49:924–931

    Article  PubMed  Google Scholar 

  79. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee, part II: the results of rehabilitation, activity modification and counseling on functional disability. J Bone Joint Surg Am 65:163–174

    PubMed  CAS  Google Scholar 

  80. Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee, part I: the long term functional disability in athletically active individuals. J Bone Joint Surg Am 65:154–162

    PubMed  CAS  Google Scholar 

  81. Pailhous J, Bonnard M (1992) Steady-state fluctuations of human walking. Behav Brain Res 47:181–189

    Article  PubMed  CAS  Google Scholar 

  82. Patangay A, Zhang Y, Lewicke A (2009) Measures of cardiac contractility variability during ischemia. Conf Proc IEEE Eng Med Biol Soc 2009:4198–4201

  83. Peng C-K, Hausdorff JM, Goldberger AL (2000) Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease. In: Walleczek J (ed) Self-organized biological dynamics and nonlinear control. Cambridge University Press, Cambridge

    Google Scholar 

  84. Peng C-K, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 70:1343–1346

    Article  Google Scholar 

  85. Pikkujämsä SM, Mäkikallio TH, Sourander LB, Räihä IJ, Puukka P, Skyttä J, Peng CK, Goldberger AL, Huikuri HV (1999) Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory. Circulation 100:393–399

    PubMed  Google Scholar 

  86. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2279–2301

    Article  Google Scholar 

  87. Pincus SM (2000) Irregularity and asynchrony in biologic network signals. Methods Enzymol 321:149–182

    Article  PubMed  CAS  Google Scholar 

  88. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7:335–345

    Article  PubMed  CAS  Google Scholar 

  89. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity measure for fatal heart rate analysis. Obstet Gynecol 79:249–255

    PubMed  CAS  Google Scholar 

  90. Pincus SM, Keefe DL (1992) Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 262:E741–E754

    PubMed  CAS  Google Scholar 

  91. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574

    Article  PubMed  Google Scholar 

  92. Rapp PE (1994) A guide to dynamical analysis. Integr Psychol Behav 29:311–327

    Article  CAS  Google Scholar 

  93. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134

    Article  Google Scholar 

  94. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L (1998) Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349–362

    Article  PubMed  CAS  Google Scholar 

  95. Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20:167–192

    Article  Google Scholar 

  96. Schmidt RA (2003) Motor schema theory after 27 years: reflections and implications for a new theory. Res Q Exerc Sport 74:366–375

    PubMed  Google Scholar 

  97. Schmidt RA, Lee TD (2005) Motor control and learning: a behavioral emphasis. Human Kinetics Publishers, Champaigns

    Google Scholar 

  98. Shiogai Y, Stefanovska A, McClintock PV (2010) Nonlinear dynamics of cardiovascular ageing. Phys Rep 488:51–110

    Article  PubMed  CAS  Google Scholar 

  99. Sjölander P, Johansson H, Djupsjöbacka M (2002) Spinal and supraspinal effects of activity in ligament afferents. J Electromyogr Kinesiol 12:167–176

    Article  PubMed  Google Scholar 

  100. Small M, Yu D, Harrison RG (2001) Surrogate test for pseudoperiodic time series data. Phys Rev Lett 87:8101–8104

    Article  CAS  Google Scholar 

  101. Smith BA, Stergiou N, Ulrich BD (2010) Lyapunov exponent and surrogation analysis of patterns of variability: profiles in new walkers with and without down syndrome. Mot Control 14:126–142

    Google Scholar 

  102. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213

    Article  PubMed  CAS  Google Scholar 

  103. Solomonow M, Krogsgaard M (2001) Sensimotor control of knee stability. A review. Scand J Med Sci Sports 11:64–80

    Article  PubMed  CAS  Google Scholar 

  104. Sosnoff JJ, Newell KM (2008) Age-related loss of adaptability to fast time scales in motor variability. J Gerontol B Psychol Sci Soc Sci 63:P344–P352

    PubMed  Google Scholar 

  105. Sosnoff JJ, Voudrie SJ (2009) Practice and age-related loss of adaptability in sensorimotor performance. J Mot Behav 41:137–146

    Article  PubMed  Google Scholar 

  106. Stergiou N, Buzzi UH, Kurz MJ, Heidel J (2004) Nonlinear tools in human movement. In: Stergiou N (ed) Innovative analyses of human movement. Human Kinetics, Champaign, pp 63–90

    Google Scholar 

  107. Stergiou N, Harbourne RT, Cavanaugh JT (2006) Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther 30:120–129

    PubMed  Google Scholar 

  108. Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD (2004) The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin Biomech (Bristol, Avon) 19:957–963

    Article  Google Scholar 

  109. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading

    Google Scholar 

  110. Szeto HH, Cheng PY, Decena JA, Cheng Y, Wu DL, Dwyer G (1992) Fractal properties in fetal breathing dynamics. Am J Physiol 263:R141–R147

    PubMed  CAS  Google Scholar 

  111. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Lecture notes in mathematics: dynamical systems and turbulence, vol. 898. Springer, Berlin, pp 366–381

  112. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  113. Theiler J, Rapp PE (1996) Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroen Clin Neuro 98:213–222

    Article  CAS  Google Scholar 

  114. Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001) Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29:83–87

    PubMed  CAS  Google Scholar 

  115. Tzagarakis GN, Tsivgoulis SD, Papagelopoulos PJ, Mastrokalos DS, Papadakis NC, Kampanis NA, Kontakis GM, Nikolaou PK, Katonis PG (2010) Influence of acute anterior cruciate ligament deficiency in gait variability. J Int Med Res 38:511–525

    PubMed  CAS  Google Scholar 

  116. Urbach D, Nebelung W, Weiler HT, Awiszus F (1999) Bilateral deficit of voluntary quadriceps muscle activation alter unilateral ACL tear. Med Sci Sports Exerc 31:1691–1696

    Article  PubMed  CAS  Google Scholar 

  117. Vaillancourt DE, Newell KM (2000) The dynamics of resting and postural tremor in Parkinson’s disease. Clin Neurophysiol 111:2046–2056

    Article  PubMed  CAS  Google Scholar 

  118. Valeriani M, Restuccia D, DiLazzaro V, Franceschi F, Fabbriciani C, Tonali P (1996) Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain 119:1751–1762

    Article  PubMed  Google Scholar 

  119. Wessel N, Riedl M, Kurths J (2009) Is the normal heart rate “chaotic” due to respiration? Chaos 19:028508

    Article  PubMed  Google Scholar 

  120. West BJ, Griffin L (1998) Allometric control of human gait. Fractals 6:101–108

    Article  Google Scholar 

  121. West BJ, Griffin L (1999) Allometric control, inverse power laws and human gait. Chaos Solitons Fractals 10:1519–1527

    Article  Google Scholar 

  122. Wolf A, Swift JB, Swinney HL, Vastano JA (1965) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  Google Scholar 

  123. Yakhdani HR, Bafghi HA, Meijer OG, Bruijn SM, van den Dikkenberg N, Stibbe AB, van Royen BJ, van Dieën JH (2010) Stability and variability of knee kinematics during gait in knee osteoarthritis before and after replacement surgery. Clin Biomech (Bristol, Avon) 25:230–236

    Article  Google Scholar 

  124. Zampeli F, Moraiti CO, Xergia S, Tsiaras VA, Stergiou N, Georgoulis AD (2010) Stride-to-stride variability is altered during backward walking in anterior cruciate ligament deficient patients. Clin Biomech (Bristol, Avon) 25:1037–1041

    Article  Google Scholar 

  125. Zbilut JP, Thomasson N, Webber CL (2002) Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med Eng Phys 24:53–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the NIH (K25HD047194 and 1K99AG033684), the NIDRR (H133G040118 and H133G080023), and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Appendix

Appendix

The behavior of a continuously changing system can be periodic, random or chaotic. Periodic systems are organized and are repeatable and predictable (Fig. 5). Random systems, on the other hand, contain no order and are unpredictable. Their behavior is never repeated (Fig. 6). Chaotic systems have characteristics of both. They seem to be random but they contain order and are deterministic in nature. They are unpredictable, very flexible and can operate under various conditions (Fig. 7).

Fig. 5
figure 5

Graphic representation of a periodic system [sin(1/10)] (a) and the corresponding phase plane plot (b), where the time series data are plotted versus the first derivative. The LyE and ApEn value for this system are 0 and 0, respectively

Fig. 6
figure 6

Graphic representation of a random system (Gaussian noise centered on zero and a standard deviation of 1.0) (a) and the corresponding phase plane plot (b). The LyE and ApEn value for this system are 0.5 and 2, respectively

Fig. 7
figure 7

Graphic representation of a chaotic system (the Lorentz attractor) (a) and the corresponding phase plane plot (b). The LyE and ApEn value for this system are 0.1 and 0.5, respectively

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decker, L.M., Moraiti, C., Stergiou, N. et al. New insights into anterior cruciate ligament deficiency and reconstruction through the assessment of knee kinematic variability in terms of nonlinear dynamics. Knee Surg Sports Traumatol Arthrosc 19, 1620–1633 (2011). https://doi.org/10.1007/s00167-011-1484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1484-2

Keywords

Navigation