Lattice Boltzmann simulation of natural convection in nanofluidfilled 2D long enclosures at presence of magnetic field
 GH. R. Kefayati
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
In this paper, the effects of a magnetic field on natural convection flow in filled long enclosures with Cu/water nanofluid have been analyzed by lattice Boltzmann method. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 10^{3}–10^{5}, the volumetric fraction of nanoparticles between 0 and 6 %, the aspect ratio of the enclosure between A = 0.5 and 2. The Hartmann number has been varied from Ha = 0 to 90 with interval 30 while the magnetic field is considered at inclination angles of θ = 0°, 30°, 60° and 90°. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and the aspect ratios. Heat transfer decreases with the growth of the aspect ratio but this growth causes the effect of the nanoparticles to increase. The magnetic field augments the effect of the nanoparticles at high Rayleigh numbers (Ra = 10^{5}). The effect of the nanoparticles rises for high Hartmann numbers when the aspect ratio increases. The rise in the magnetic field inclination improves heat transfer at aspect ratio of A = 0.5.
 De Davis, V. (1983) Natural convection of air in a square cavity; a benchmark numerical solution. Int. J. Numer. Fluids. 3: pp. 249264 CrossRef
 Ostrach, S. (1988) Natural convection in enclosures. J. Heat Transfer. 110: pp. 11751190 CrossRef
 Catton, I.: Natural convection in enclosures. In: Proceedings of the Sixth International Heat Transfer Conference, vol. 6 (1978)
 Bejan, A. (1995) Convective Heat Transfer. Wiley, New York
 Patrick, H.O., David, N. (1999) Introduction to Convective Heat Transfer Analysis. McGraw Hill, New York
 Kahveci, K., Oztuna, S. (2009) MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B Fluids. 28: pp. 744752 CrossRef
 Pirmohammadi, M., Ghassemi, M. (2009) Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int. Commun. Heat Mass Transf. 36: pp. 776780 CrossRef
 Sathiyamoorthy, M., Chamkha, A. (2010) Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49: pp. 18561865 CrossRef
 Sivasankaran, S., Malleswaran, A., Lee, J., Sundar, P. (2011) Hydromagnetic combined convection in a liddriven cavity with sinusoidal boundary conditions on both sidewalls. Int. J. Heat Mass Transf. 54: pp. 512525 CrossRef
 Rahman, M.M., Parvin, S., Saidur, R., Rahim, N.A. (2011) Magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. Int. Commun. Heat Mass Transf. 38: pp. 184193 CrossRef
 Oztop, H.F., Rahman, M.M., Ahsan, A., Hasanuzzaman, M., Saidur, R., AlSalem, K., Rahim, N.A. (2012) MHD natural convection in an enclosure from two semicircular heaters on the bottom wall. Int. J. Heat Mass Transf. 55: pp. 18441854 CrossRef
 Oztop, H.F., AlSalem, K., Pop, I. (2011) MHD mixed convection in a liddriven cavity with corner heater. Int. J. Heat Mass Transf. 54: pp. 34953504
 Nasrin, R., Parvin, S. (2011) Hydromagnetic effect on mixed convection in a liddriven cavity with sinusoidal corrugated bottom surface. Int. Commun. Heat Mass Transf. 38: pp. 781789 CrossRef
 Khanafer, K., Vafai, K., Lightstone, M. (2003) Buoyancydriven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int. Commun. Heat Mass Transf. 46: pp. 36393653 CrossRef
 Wen, D., Ding, Y. (2005) Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow 26: pp. 855864 CrossRef
 Ho, C.J., Chen, M.W., Li, Z.W. (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 51: pp. 45064516 CrossRef
 AbuNada, E., Oztop, H.F. (2009) Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow 30: pp. 669678 CrossRef
 Kefayati, G.H.R., Hosseinizadeh, S.F., Gorji, M., Sajjadi, H. (2011) Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 38: pp. 798805 CrossRef
 Kefayati, G.H.R., Gorji, M., Sajjadi, H., Ganji, D.D. (2012) Lattice Boltzmann simulation of MHD mixed convection in a liddriven square cavity with linearly heated wall. Sci. Iran. 19: pp. 10531065 CrossRef
 Kefayati, G.H.R., Hosseinizadeh, S.F., Gorji, M., Sajjadi, H. (2011) Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to Water/copper nanofluid. Int. J. Therm. Sci. 52: pp. 91101 CrossRef
 Kefayati, G.H.R. : Effect of a magnetic field on natural convection in an open cavity subjugated to Water/Alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat Mass Transf. (in press)
 Lai, F., Yang, Y. (2011) Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50: pp. 19301941 CrossRef
 Zou, Q.S., He, X.Y. (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9: pp. 15911598 CrossRef
 Title
 Lattice Boltzmann simulation of natural convection in nanofluidfilled 2D long enclosures at presence of magnetic field
 Journal

Theoretical and Computational Fluid Dynamics
Volume 27, Issue 6 , pp 865883
 Cover Date
 20131101
 DOI
 10.1007/s001620120290x
 Print ISSN
 09354964
 Online ISSN
 14322250
 Publisher
 Springer Berlin Heidelberg
 Additional Links
 Topics
 Keywords

 Natural convection
 Long enclosures
 Nanofluid
 Magnetic field
 Lattice Boltzmann method
 Industry Sectors
 Authors

 GH. R. Kefayati ^{(1)}
 Author Affiliations

 1. Young Researchers Club, South Tehran Branch, Islamic Azad University, Tehran, Iran