Skip to main content
Log in

The near-Earth objects and their potential threat to our planet

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q<1.3 AU and which can approach or cross that of the Earth. A NEA is defined as a “potentially hazardous asteroid” (PHA) for Earth when its minimum orbit intersection distance (MOID) comes inside 0.05 AU and it has an absolute magnitude H<22 mag (i.e. mean diameter > 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.planetary.org/multimedia/space-images/small-bodies/change-2-images-of-toutatis.html.

  2. We recall that the absolute magnitude can serve as a proxy for the diameter D of an asteroid, as \(D = 1329\times10{}^{-0.2H}/\sqrt{p_{V}}\), where p V is the asteroid albedo and D is expressed in km (e.g., Pravec and Harris, 2007).

  3. From the “Earth Impact Database”, maintained by the Planetary and Space Science Centre at the University of New Brunswick, Canada. http://www.passc.net/EarthImpactDatabase/index.html.

  4. http://spacewatch.lpl.arizona.edu/.

  5. http://www.ll.mit.edu/mission/space/linear/.

  6. http://www.lpl.arizona.edu/css/.

  7. pan-starrs.ifa.hawaii.edu/.

  8. http://www.lsst.org/lsst/.

  9. http://www.lowell.edu/dct.php.

  10. http://www.ifa.hawaii.edu/info/press-releases/ATLAS/.

  11. http://b612foundation.org/sentinelmission/.

  12. http://neocam.ipac.caltech.edu/.

  13. http://neossat.ca/.

  14. http://www.minorplanetcenter.net/.

  15. http://neo.jpl.nasa.gov/.

  16. http://newton.dm.unipi.it/neodys/.

  17. If as a consequence of an encounter with Earth, the NEO is perturbed into an orbit of period Pk/h years, with h and k integers, then after h periods of the asteroid k periods of the Earth have elapsed, and a “resonant return” will take place.

  18. www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/Near-Earth_Objects_-_NEO_Segment.

  19. http://www.neoshield.net.

References

  • A’Hearn MF, Belton MJS, Delamere WA et al. (2005) Deep impact: excavating comet Tempel 1. Science 310:258–264

    Article  ADS  Google Scholar 

  • Alexander CMOD, Bowden R, Fogel ML et al. (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–723

    Article  ADS  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208:1095–1108

    Article  ADS  Google Scholar 

  • Asphaug E, Ryan EV, Zuber MT (2002) Asteroid interiors. In: Bottke WF, Paolicchi P, Binzel RP, Cellino A (eds) Asteroids III. University of Arizona Press, Tucson, pp 463–484

    Google Scholar 

  • Bancelin D, Colas F, Thuillot W, Hestroffer D, Assafin M (2012) Asteroid (99942) Apophis: new predictions of Earth encounters for this potentially hazardous asteroid. Astron Astrophys 544:A15

    Article  ADS  Google Scholar 

  • Barucci MA, Cheng AF, Michel P et al. (2012) MarcoPolo-R near earth asteroid sample return mission. Exp Astron 33:645–684

    Article  ADS  Google Scholar 

  • Binzel RP (2000) The Torino impact hazard scale. Planet Space Sci 48:297–303

    Article  ADS  Google Scholar 

  • Binzel RP, Rivkin AS, Bus SJ, Sunshine JM, Burbine TH (2001) MUSES-C target asteroid (25143) 1998 SF36: a reddened ordinary chondrite. Meteorit Planet Sci 36:1167–1172

    Article  ADS  Google Scholar 

  • Bottke WF, Morbidelli A, Jedicke R et al. (2002) Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156:399–433

    Article  ADS  Google Scholar 

  • Bowell E, Millis RL, Dunham EW, Koehn BW, Smith BW (2007) Searching for NEOs using lowell observatorys discovery channel telescope (DCT). In: Valsecchi GB, Vokrouhlický D, Milani A (eds) Near Earth objects, our celestial neighbors: opportunity and risk. Proceedings of IAU symposium, vol 236. Cambridge University Press, Cambridge, pp 363–370

    Google Scholar 

  • Brož M, Vokrouhlický D, Bottke WF et al. (2006) Non-gravitational forces acting on small bodies. In: Daniela L, Sylvio Ferraz M, Angel FJ (eds) Asteroids, comets, meteors. Proceedings of the 229th symposium of the international astronomical union. Cambridge University Press, Cambridge, pp 351–365

    Google Scholar 

  • Busch MW, Ostro SJ, Benner LAM et al. (2011) Radar observations and the shape of near-Earth asteroid 2008 EV5. Icarus 212:649–660

    Article  ADS  Google Scholar 

  • Carry B (2012) Density of asteroids. Planet Space Sci 73:98–118

    Article  ADS  Google Scholar 

  • Cheng AF (2002) Near Earth asteroid rendezvous: mission summary. In: Bottke WF, Paolicchi P, Binzel RP, Cellino A (eds) Asteroids III. University of Arizona Press, Tucson, pp 351–366

    Google Scholar 

  • Chesley SR, Spahr TB (2004) Earth impactors: orbital characteristics and warning times. In: Belton M, Morgan TH, Samarasinha N, Yeomans DK (eds) Mitigation of hazardous comets and asteroids. Cambridge University Press, Cambridge, pp 22–37

    Chapter  Google Scholar 

  • Chesley SR, Ward SN (2003) Assessing the human hazard from impact-generated tsunami. Bull Am Astron Soc 35:973

    ADS  Google Scholar 

  • Chesley SR, Chodas PW, Milani A, Valsecchi GB, Yeomans DK (2002) Quantifying the risk posed by potential Earth impacts. Icarus 159:423–432

    Article  ADS  Google Scholar 

  • Cooper G, Kimmich N, Belisle W et al. (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883

    Article  ADS  Google Scholar 

  • DeMeo F, Binzel RP (2008) Comets in the near-Earth object population. Icarus 194:436–449

    Article  ADS  Google Scholar 

  • DeMeo FE, Binzel RP, Slivan SM, Bus SJ (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202:160–180

    Article  ADS  Google Scholar 

  • Dotto E, Barucci MA, Binzel RP, Delbó M (2005) Surface compositions of NEOs. C R Phys 6:303–312

    Article  ADS  Google Scholar 

  • Drake MJ, Lauretta DS (Osiris-RexTeam) (2011) Asteroid sample return mission. In: LPICo, pp 1611–5012

    Google Scholar 

  • Dunn TL, Burbine TH, Bottke WF, Clark JP (2013) Mineralogies and source regions of near-Earth asteroids. Icarus 222:273–282

    Article  ADS  Google Scholar 

  • Fang J, Margot J-L (2012) Binary asteroid encounters with terrestrial planets: timescales and effects. Astron J 143:25

    Article  ADS  Google Scholar 

  • Farnocchia D, Chesley SR, Vokrouhlický D et al. (2013) Near Earth asteroids with measurable Yarkovsky effect. Icarus 224:1–13

    Article  ADS  Google Scholar 

  • Fujiwara A, Kawaguchi J, Yeomans DK et al. (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312:1330–1334

    Article  ADS  Google Scholar 

  • Gehrels T (1991) Scanning and charge-coupled devices. Space Sci Rev 58:347–375

    Article  ADS  Google Scholar 

  • Giorgini JD, Benner LAM, Ostro SJ, Nolan MC, Busch MW (2008) Predicting the Earth encounters of (99942) Apophis. Icarus 193:1–19

    Article  ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  ADS  Google Scholar 

  • Greenstreet S, Ngo H, Gladman B (2012) The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus 217:355–366

    Article  ADS  Google Scholar 

  • Grieve RAF (1993) Impact craters: lessons from and for the Earth. Vistas Astron 36:203–230

    Article  ADS  Google Scholar 

  • Harris AW (2013a) The population of near-Earth asteroids and current survey completion. In: 3rd IAA planetary defense conference, Flagstaff, abstract IAA-PDC13-02-09P

    Google Scholar 

  • Harris AW (2013b) In: The value of enhanced NEO surveys. 3rd IAA planetary defense conference, Flagstaff, abstract IAA-PDC13-05-09

    Google Scholar 

  • Harris AW, Barucci MA, Cano JL et al. (2013) The European Union funded NEOShield project: a global approach to near-Earth object impact threat mitigation. Acta Astronaut 90:80–84

    Article  ADS  Google Scholar 

  • Haskin LA, Korotev RL, Rockow KM, Jolliff BL (1998) The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias. Meteorit Planet Sci 33:959–975

    Article  ADS  Google Scholar 

  • Hildebrand AR, Carroll KA, Tedesco EF et al. (2004) Advantages of searching for asteroids from low Earth orbit: the NEOSSat mission. Earth Moon Planets 95:33–40

    Article  ADS  Google Scholar 

  • Holsapple K (2007) Spin limits of solar system bodies: from the small fast-rotators to 2003 EL61. Icarus 187:500–509

    Article  ADS  Google Scholar 

  • Holsapple KA, Housen KR (2012) Momentum transfer in asteroid impacts, I: theory and scaling. Icarus 221:875–887

    Article  ADS  Google Scholar 

  • Housen KR, Holsapple KA (2012) Craters without ejecta. Icarus 219:297–306

    Article  ADS  Google Scholar 

  • Ivanova MA, Badyukov DD, Ryazantsev KM et al. (2013) Fall, searching and first study of the Chelyabinsk meteorite. In: 76th annual meeting of the meteoritical society. Abstract 5366

    Google Scholar 

  • Jablonski D (1994) Extinctions in the fossil record. Philos Trans R Soc Lond B 344:11–17

    Article  ADS  Google Scholar 

  • James N, Abello R, Lanucara M, Mercolino M, Maddè R (2009) Implementation of an ESA delta-DOR capability. Acta Astronaut 64:1041–1049

    Article  ADS  Google Scholar 

  • Jedicke R, Tonry J, Veres P et al (2012) ATLAS: asteroid terrestrial-impact last alert system. DPS meeting #44, #210.12

  • Jenniskens P, Shaddad MH, Numan D et al. (2009) The impact and recovery of asteroid 2008 TC3. Nature 458:485–488

    Article  ADS  Google Scholar 

  • Jones RL, Chesley SR, Connolly AJ et al. (2009) Solar system science with LSST. Earth Moon Planets 105:101–105

    Article  ADS  Google Scholar 

  • Kaiser N, Burgett W, Chambers K et al. (2010) The Pan-STARRS wide-field optical/NIR imaging survey. In: Stepp LM, Gilmozzi R, Hall HJ (eds) Ground-based and airborne telescopes III. Proc SPIE, vol 7733, p 77330E

    Chapter  Google Scholar 

  • Kofman W, Herique A, Goutail J-P et al. (2007) The comet nucleus sounding experiment by radiowave transmission (CONSERT): a short description of the instrument and of the commissioning stages. Space Sci Rev 128:413–432

    Article  ADS  Google Scholar 

  • Larson SM, Beshore EC, Christensen EJ et al. (2006) The status of the Catalina sky survey for NEOs. Bull Am Astron Soc 38:592

    ADS  Google Scholar 

  • Longo G (2007) The Tunguska event. In: Bobrowsky PT, Rickman H (eds) Comet/asteroid impacts and human society, an interdisciplinary approach. Springer, Berlin, pp 303–330

    Chapter  Google Scholar 

  • Lu ET, Love SG (2005) Gravitational tractor for towing asteroids. Nature 438:177–178

    Article  ADS  Google Scholar 

  • Magri C, Howell ES, Nolan MC et al. (2011) Radar and photometric observations and shape modeling of contact binary near-Earth asteroid (8567) 1996 HW1. Icarus 214:210–227

    Article  ADS  Google Scholar 

  • Mainzer AK (2006) NEOCam: the near-Earth object camera. Bull Am Astron Soc 38:568

    ADS  Google Scholar 

  • Mainzer A, Grav T, Bauer J et al. (2011) NEOWISE observations of near-Earth objects: preliminary results. Astrophys J 743:156

    Article  ADS  Google Scholar 

  • Marchi S, Mottola S, Cremonese G, Massironi M, Martellato E (2009) A new cronology for the Moon and Mercury. Astron J 137:4936–4948

    Article  ADS  Google Scholar 

  • Marchi S, Bottke WF, Kring DA, Morbidelli A (2012) The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet Sci Lett 325:27–38

    Article  ADS  Google Scholar 

  • Martins Z, Botta O, Fogel ML et al. (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136

    Article  ADS  Google Scholar 

  • Masiero JR, Mainzer AK, Grav T et al. (2011) Main belt asteroids with WISE/NEOWISE, I: preliminary albedos and diameters. Astrophys J 741:68

    Article  ADS  Google Scholar 

  • McMurtry CW, Lee D, Beletic J et al (2013) Development of passively cooled long wave infrared detector arrays for NEOCam. AAS Meeting #221, #350.04

  • Michel P (2013) Physical properties of near-Earth objects that inform mitigation. Acta Astronaut 90:6–13

    Article  ADS  Google Scholar 

  • Micheli M, Tholen DJ, Elliott GT (2012) Detection of radiation pressure acting on 2009 BD. New Astron 17:446–452

    Article  ADS  Google Scholar 

  • Mommert M, Harris AW, Trilling DE et al (2012) ExploreNEOs: a search for near-Earth objects of cometary origin. DPS meeting #44, #302.03

  • Morbidelli A, Bottke WF Jr, Froeschlé C, Michel P (2002) Origin and evolution of near-Earth objects. In: Bottke WF, Paolicchi P, Binzel RP, Cellino A (eds) Asteroids III. University of Arizona Press, Tucson, pp 409–422

    Google Scholar 

  • Morrison D, Chapman CR, Steel D, Binzel RP (2004) Impacts and the public: communicating the nature of the impact hazard. In: Belton MJS, Morgan TH, Samarasinha NH, Yeomans DK (eds) Mitigation of hazardous comets and asteroids. Cambridge University Press, Cambridge, pp 353–390

    Chapter  Google Scholar 

  • Nakamura T, Noguchi T, Tanaka M et al. (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116

    Article  ADS  Google Scholar 

  • Nichols DJ, Johnson KR (2008) Plants and the K–T boundary. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nuth JA, Johnson NM (2012) Complex protostellar chemistry. Science 336:424–425

    Article  ADS  Google Scholar 

  • Ostro SJ, Benner LAM, Magri C et al. (2005) Radar observations of itokawa in 2004 and improved shape estimation. Meteorit Planet Sci 40:1563–1574

    Article  ADS  Google Scholar 

  • Plesko CS, Weaver R, Huebner WF (2011) Momentum transfer from a nuclear stand-off burst to a potentially hazardous asteroid or comet nucleus. In: American geophysical union, Fall meeting 2011, abstract #P23D-1740

    Google Scholar 

  • Prado J-Y, Barucci MA, Hinglais E (2012) Probing the interior of asteroid APOPHIS, a unique opportunity in 2029. In: 39th COSPAR scientific assembly, abstract A2.1-6-12

    Google Scholar 

  • Pravec P, Harris AW (2007) Binary asteroid population, 1: angular momentum content. Icarus 190:250–259

    Article  ADS  Google Scholar 

  • Pravec P, Scheirich P, Kušnirák P et al. (2006) Photometric survey of binary near-Earth asteroids. Icarus 181:63–93

    Article  ADS  Google Scholar 

  • Pravec P, Harris AW, Warner BD (2007) NEA rotations and binaries. In: Valsecchi GB, Vokrouhlický D, Milani A (eds) Near Earth objects, our celestial neighbors: opportunity and risk. Proceedings of IAU symposium, vol 236. Cambridge University Press, Cambridge, pp 167–176

    Google Scholar 

  • Rathke A, Izzo D (2007) Keplerian consequences of an impact on an asteroid and their relevance for a deflection demonstration mission. In: Valsecchi GB, Vokrouhlický D, Milani A (eds) Near Earth objects, our celestial neighbors: opportunity and risk. Proceedings of IAU symposium, vol 236. Cambridge University Press, Cambridge, pp 417–426

    Google Scholar 

  • Raup DM, Sepkoski JJ (1986) Periodic extinction of families and genera. Science 231:833–836

    Article  ADS  Google Scholar 

  • Rubincam DP (2000) Radiative spin-up and spin-down of small asteroids. Icarus 148:2–11

    Article  ADS  Google Scholar 

  • Rubincam DP (2007) Orbital YORP and asteroid orbit evolution, with application to Apophis. Icarus 192:460–468

    Article  ADS  Google Scholar 

  • Sánchez P, Scheeres DJ (2013) The strength of regolith and rubble pile asteroids. 1306.1622. Earth Planet Astrophys (accesed 27 July 2013)

  • Schaffer MG, Charania A, Olds JR (2007) Evaluating the effectiveness of different NEO mitigation options. In: AIAA 2007 planetary defense conference, Washington, abstract AIAA-2007-P2-1

    Google Scholar 

  • Schulte P, Alegret L, Arenillas I et al. (2010) The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science 327:1214–1218

    Article  ADS  Google Scholar 

  • Schweickart R, Chapman C, Durda D, Hut P (2006) Threat mitigation: the gravity tractor. physics/0608157. Accessed 27 July 2013

  • Stokes GH, Evans JB, Viggh EM, Shelly FC, Pearce EC (2000) Lincoln near-Earth asteroid program (LINEAR). Icarus 148:21–28

    Article  ADS  Google Scholar 

  • Vaduvescu O, Popescu M, Comsa I et al. (2013) Mining the ESO WFI and INT WFC archives for known near earth asteroids. Mega-precovery software. Astron Nachr 334:718–728

    ADS  Google Scholar 

  • Valsecchi GB, Milani A, Gronchi GF, Chesley SR (2003) Resonant returns to close approaches: analytical theory. Astron Astrophys 408:1179–1196

    Article  ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  ADS  Google Scholar 

  • Walsh KJ, Delbó M, Bottke WF, Vokrouhlický D, Lauretta DS (2013) Introducing the Eulalia and new Polana asteroid families: Re-assessing primitive asteroid families in the inner Main Belt. Icarus 225:283–297

    Article  ADS  Google Scholar 

  • Yeomans DK (2012) Near-Earth objects: finding them before they find us. Princeton University Press, Princeton

    Google Scholar 

  • Yeomans D, Chodas P (2013) Additional details on the large fireball Event over Russia on February 2013. Note from the NASA/JPL Near-Earth Object Program Office. http://neo.jpl.nasa.gov/news/fireball_130301.html. Accessed 27 July 2013

  • Yoshikawa M, Minamino H, Tsuda Y et al. (2012) Hayabusa2—new challenge of next asteroid sample return mission. In: LPICo, pp 1667–6188

    Google Scholar 

Download references

Acknowledgements

We thank Richard P. Binzel (Massachusetts Institute of Technology, USA), referee of this article, as well as Alan W. Harris (Space Science Institute, USA) and Elisabetta Dotto (INAF—Osservatorio Astronomico di Roma, Italy) for their useful comments. We acknowledge support from the NEOShield project, funded by the European Commission’s Seventh Framework Programme (Contract No. FP7-SPACE-2011-282703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Perna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perna, D., Barucci, M.A. & Fulchignoni, M. The near-Earth objects and their potential threat to our planet. Astron Astrophys Rev 21, 65 (2013). https://doi.org/10.1007/s00159-013-0065-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-013-0065-4

Keywords

Navigation