, Volume 36, Issue 1, pp 29-41
Date: 18 Jul 2007

Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The purpose of this paper was to study the layout design of the components and their supporting structures in a finite packing space. A coupled shape and topology optimization (CSTO) technique is proposed. On one hand, by defining the location and orientation of each component as geometric design variables, shape optimization is carried out to find the optimal layout of these components and a finite-circle method (FCM) is used to avoid the overlap between the components. On the other hand, the material configuration of the supporting structures that interconnect components is optimized simultaneously based on topology optimization method. As the FE mesh discretizing the packing space, i.e., design domain, has to be updated itertively to accommodate the layout variation of involved components, topology design variables, i.e., density variables assigned to density points that are distributed regularly in the entire design domain will be introduced in this paper instead of using traditional pseudo-density variables associated with finite elements as in standard topology optimization procedures. These points will thus dominate the pseudo-densities of the surrounding elements. Besides, in the CSTO, the technique of embedded mesh is used to save the computing time of the remeshing procedure, and design sensitivities are calculated w.r.t both geometric variables and density variables. In this paper, several design problems maximizing structural stiffness are considered subject to the material volume constraint. Reasonable designs of components layout and supporting structures are obtained numerically.