[1]

A. Antipa, D.R.L. Brown, R.P. Gallant, R.J. Lambert, R. Struik, S.A. Vanstone, Accelerated verification of ecdsa signatures, in *SAC 2005*, ed. by B. Preneel, S.E. Tavares. LNCS, vol. 3879 (Springer, Berlin, 2006), pp. 307–318

[2]

R. Avanzi, Aspects of hyperelliptic curves over large prime fields in software implementations, in *CHES 2004*, ed. by M. Joye, J.-J. Quisquater. LNCS, vol. 3156 (Springer, Berlin, 2004), pp. 148–162

[3]

R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Vercauteren,

*Handbook of Elliptic and Hyperelliptic Curve Cryptography* (Chapman and Hall/CRC, London, Boca Raton, 2006)

MATH[4]

D.J. Bernstein, Curve25519: new Diffie–Hellman speed records, in *PKC 2006*, ed. by M. Yung et al. LNCS, vol. 3958 (Springer, Berlin, 2006), pp. 207–228

[5]

D.J. Bernstein, Differential addition chains, preprint (2006).

http://cr.yp.to/papers.html#diffchain
[6]

D.J. Bernstein, Elliptic vs. hyperelliptic, part 1 ECC 2006, Toronto, Canada.

http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/slides.html
[7]

D.J. Bernstein, T. Lange, Faster addition and doubling on elliptic curves, in

*Asiacrypt 2007*, ed. by K. Kurosawa. LNCS, vol. 4833 (Springer, Berlin, 2007), pp. 29–50

CrossRef[8]

D.J. Bernstein, T. Lange, Inverted Edwards coordinates, in *AAECC 2007*, ed. by S. Boztas, H.-F. Lu. LNCS, vol. 4851 (Springer, Berlin, 2007), pp. 20–27

[9]

D.J. Bernstein, T. Lange, Analysis and optimization of elliptic-curve single-scalar multiplication, in *Finite Fields and Applications: Proceedings of Fq8*. Contemporary Mathematics, vol. 461 (Am. Math. Soc., Providence, 2008), pp. 1–18

[10]

D.J. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters, Twisted Edwards curves, in

*Africacrypt 2008*, ed. by S. Vaudenay. LNCS, vol. 5023 (Springer, Berlin, 2008), pp. 389–405

CrossRef[11]

I. Blake, G. Seroussi, N.P. Smart (eds.),

*Elliptic Curves in Cryptography* (Cambridge University Press, Cambridge, 1999)

MATH[12]

eBATS: ECRYPT benchmarking of asymmetric systems,

http://www.ecrypt.eu.org/ebats/
[13]

D.J. Bernstein, T. Lange (eds.), eBACS: ECRYPT benchmarking of cryptographic systems,

http://bench.cr.yp.to/, accessed 9 January 2009

[14]

D.R.L. Brown, Multi-dimensional Montgomery ladders for elliptic curves, eprint 2006/220.

http://www.eprint.iacr.org/2006/220
[15]

E. Dahmen, K. Okeya, D. Schepers, Affine precomputation with sole inversion in elliptic curve cryptography, in *ACISP 2007*, ed. by J. Pieprzyk, H. Ghodosi, E. Dawson. LNCS, vol. 4586 (Springer, Berlin, 2007), pp. 245–258

[16]

I.M. Duursma, P. Gaudry, F. Morain, Speeding up the discrete log computation on curves with automorphisms, in *ASIACRYPT 1999*, ed. by K.-Y. Lam, E. Okamoto, C. Xing. LNCS, vol. 1716 (Springer, Berlin, 1999), pp. 103–121

[17]

H.M. Edwards, A normal form for elliptic curves.

*Bull. Am. Math. Soc.*
**44**, 393–422 (2007)

CrossRefMATH[18]

S.D. Galbraith, M. Scott, Exponentiation in pairing-friendly groups using homomorphisms, in

*Pairing 2008*, ed. by S.D. Galbraith, K.G. Paterson. LNCS, vol. 5209 (Springer, Berlin, 2008), pp. 211–224

CrossRef[19]

S.D. Galbraith, X. Lin, M. Scott, Endomorphisms for faster elliptic curve cryptography on a large class of curves, in

*EUROCRYPT 2009*, ed. by A. Joux. LNCS, vol. 5479 (Springer, Berlin, 2009), pp. 518–535

CrossRef[20]

R.P. Gallant, R.J. Lambert, S.A. Vanstone, Improving the parallelized Pollard lambda search on anomalous binary curves.

*Math. Comput.*
**69**, 1699–1705 (2000)

MATHMathSciNet[21]

R.P. Gallant, R.J. Lambert, S.A. Vanstone, Faster point multiplication on elliptic curves with efficient endomorphisms, in

*CRYPTO 2001*, ed. by J. Kilian. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 190–200

CrossRef[22]

P. Gaudry, Index calculus for Abelian varieties of small dimension and the elliptic curve discrete logarithm problem.

*J. Symb. Comput.*
**44**(12), 1690–1702 (2009)

CrossRefMATHMathSciNet[23]

P. Gaudry, E. Thomé, The mpFq library and implementing curve-based key exchanges, SPEED workshop presentation, Amsterdam, June 2007.

www.hyperelliptic.org/SPEED/record.pdf
[24]

P. Gaudry, E. Thomé, N. Thériault, C. Diem, A double large prime variation for small genus hyperelliptic index calculus.

*Math. Comput.*
**76**(257), 475–492 (2007)

CrossRefMATH[25]

P. Gaudry, E. Schost, Hyperelliptic curve point counting record: 254 bit Jacobian, post to NMBRTHRY list, 22 Jun 2008.

http://www.loria.fr/gaudry/record127/
[26]

R. Granger, On the static Diffie–Hellman problem on elliptic curves over extension fields, eprint 2010/177

[27]

D. Hankerson, A.J. Menezes, S. Vanstone,

*Guide to Elliptic Curve Cryptography* (Springer, Berlin, 2004)

MATH[28]

D. Hankerson, K. Karabina, A.J. Menezes, Analyzing the Galbraith-Lin-Scott point multiplication method for elliptic curves over binary fields.

*IEEE Trans. Comput.*
**58**(10), 1411–1420 (2009)

CrossRefMathSciNet[29]

F. Hess, N. Smart, F. Vercauteren, The eta-pairing revisited.

*IEEE Trans. Inf. Theory*
**52**(10), 4595–4602 (2006)

CrossRefMATHMathSciNet[30]

T. Iijima, K. Matsuo, J. Chao, S. Tsujii, Construction of Frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication, in *SCIS 2002, IEICE Japan*, January 2002, pp. 699–702

[31]

D. Kim, S. Lim, Integer decomposition for fast scalar multiplication on elliptic curves, in *SAC 2002*, ed. by K. Nyberg, H. Heys. LNCS, vol. 2595 (Springer, Berlin, 2003), pp. 13–20

[32]

S. Kozaki, K. Matsuo, Y. Shimbara, Skew-Frobenius maps on hyperelliptic curves.

*IEICE Trans.*
**E91-A**(7), 1839–1843 (2008)

CrossRef[33]

P. Longa, A. Miri, New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields, in *PKC 2008*, ed. by R. Cramer. LNCS, vol. 4939 (Springer, Berlin, 2008), pp. 229–247

[34]

B. Möller, Algorithms for multi-exponentiation, in *SAC 2001*, ed. by S. Vaudenay, A.M. Youssef. LNCS, vol. 2259 (Springer, Berlin, 2001), pp. 165–180

[35]

B. Möller, Improved techniques for fast exponentiation, in *ICISC 2002*, ed. by P. Lee, C. Lim. LNCS, vol. 2587 (Springer, Berlin, 2003), pp. 298–312

[36]

B. Möller, Fractional windows revisited: improved signed-digit representations for efficient exponentiation, in *ICISC 2004*, ed. by C. Park, S. Chee. LNCS, vol. 3506 (Springer, Berlin, 2005), pp. 137–153

[37]

B. Möller, A. Rupp, Faster multi-exponentiation through caching: accelerating (EC)DSA signature verification, in *SCN 2008*, ed. by R. Ostrovsky, R. De Prisco, I. Visconti. LNCS, vol. 5229 (Springer, Berlin, 2008), pp. 39–56

[38]

P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization. *Math. Comput.*
**47**, 243–264 (1987)

[39]

Y. Nogami, Y. Morikawa, Fast generation of elliptic curves with prime order over extension field of even extension degree, in *Proceedings 2003 IEEE International Symposium on Information Theory* (2003), p. 18

[40]

Y. Nogami, Y. Morikawa, Fast generation of elliptic curves with prime order over \({\mathbb{F}}_{p^{2^{c}}}\). Workshop on Coding and Cryptography (WCC2003) (2003), pp. 347–356

[41]

Y.-H. Park, S. Jeong, C.H. Kim, J. Lim, An alternate decomposition of an integer for faster point multiplication on certain elliptic curves, in *PKC 2002*, ed. by D. Naccache, P. Paillier. LNCS, vol. 2274 (Springer, Berlin, 2002), pp. 323–334

[42]

A.G. Rostovtsev, E.B. Markovenko, Elliptic curve point multiplication, in *MMM-ACNS 2003*, ed. by V. Gorodetsky. LNCS, vol. 2776 (Springer, Berlin, 2003), pp. 328–336

[43]

K. Schmidt-Samoa, O. Semay, T. Takagi, analysis of fractional window recoding methods and their application to elliptic curve cryptosystems.

*IEEE Trans. Comput.*
**55**(1), 48–57 (2006)

CrossRef[44]

M. Scott, MIRACL—multiprecision integer and rational arithmetic C/C++ library,

http://ftp.computing.dcu.ie/pub/crypto/miracl.zip (2008)

[45]

M. Scott, P. Szczechowiak, Optimizing multiprecision multiplication for public key cryptography, eprint 2007/299.

http://eprint.iacr.org/2007/299
[46]

F. Sica, M. Ciet, J.-J. Quisquater, Analysis of the Gallant–Lambert–Vanstone method based on efficient endomorphisms: elliptic and hyperelliptic curves, in *SAC 2002*, ed. by K. Nyberg, H.M. Heys. LNCS, vol. 2595 (Springer, Berlin, 2003), pp. 21–36

[47]

J.H. Silverman,

*The Arithmetic of Elliptic Curves*. Graduate Texts in Mathematics, vol. 106 (Springer, Berlin, 1986)

MATH[48]

J.A. Solinas, Efficient arithmetic on Koblitz curves.

*Designs Codes and Cryptogr.*
**19**(2–3), 195–249 (2000)

CrossRefMATHMathSciNet[49]

J.A. Solinas, Low-weight binary representations for pairs of integers. Technical Report CORR 2001–41, CACR (2001)

[50]

M.J. Wiener, R.J. Zuccherato, Faster attacks on elliptic curve cryptosystems, in *SAC 1998*, ed. by S. Tavares, H. Meijer. LNCS, vol. 1556 (Springer, Berlin, 1999), pp. 190–200