Skip to main content
Log in

Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Pre-collisional Eocene–Oligocene arc diorites, quartzdiorites, granodiorites, and volcanic equivalents in the Kerman arc segment in central Iran lack porphyry Cu mineralization and ore deposits, whereas collisional middle-late Miocene adakite-like porphyritic granodiorites without volcanic equivalents host some of the world’s largest Cu ore deposits. Petrological and structural constraints suggest a direct link between orogenic arc crust evolution and the presence of a fertile metallogenic environment. Ore-hosting Kuh Panj porphyry intrusions exhibit high Sr (>400 ppm), low Y (<12 ppm) contents, significant REE fractionation (La/Yb > 20), no negative Eu anomalies (Eu/Eu* ≥ 1), and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr = 0.7042–0.7047), relative to Eocene–Oligocene granitoids (mainly Sr < 400 ppm; Y > 12; La/Yb < 15; Eu/Eu* < 1; 87Sr/86Sr = 0.7053–0.7068). Trace element modeling indicates peridotite melting for the barren Eocene–Oligocene intrusions and a hydrous garnet-bearing amphibolite source for middle-late Miocene ore-hosting intrusions. The presence of garnet implies collisional arc crustal thickening by shortening and basaltic underplating from about 30–35 to 40–45 km or 12 kbar. The changes in residual mineralogy in the source of Eocene to Miocene rocks in the Kerman arc segment reflect probing of a thickening arc crust by recycling melting of the arc crustal keel. Underplating of Cu and sulfur-rich melts from fertile peridotite generated a fertile metallogenic reservoir at or near the crust–mantle boundary, and dehydration melting under oxidizing conditions produced syn- and post-collisional ore-hosting intrusions, while the lack of post-collisional volcanism prevented the venting of volatiles to the atmosphere from sulfur-rich and oxidized adakitic magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Ahmad T, Posht Kuhi M (1993) Geochemistry and petrogenesis of Urumiah–Dokhtar volcanic belt around Nain and Rafsanjan area; a preliminary study: treatise on the geology of Iran, Iranian Ministry of Mines and Metals, p 90

  • Ahmadian J, Haschke M, McDonald I, Regelous M, Ghorbani MR, Emami M, Murata M (2008) High magmatic flux during Alpine–Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran, Geol Soc America Bull (in press)

  • Alavi M (1994) Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Baldwin JA, Pearce JA (1982) Discrimination of productive and non-productive porphyritic intrusions in the Chilean Andes. Econ Geol 77:664–674

    Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series: using multinational parameters. Chem Geol 48:43–55

    Article  Google Scholar 

  • Berberian M, King GC (1981) Toward a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. J Geol Soc Lond 139:605–614

    Article  Google Scholar 

  • Bissig T, Clark AH, Lee JKW, Quadt AV (2003) Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au–Ag–Cu belt, Chile/Argentina. Min Deposit 38:844–862

    Article  Google Scholar 

  • Bonatti E (1987) Oceanic evolution, rifting or drifting in the Red Sea. Nature 330:692–693

    Article  Google Scholar 

  • Bornhorst TJ, Rose WI (1986) Partitioning of gold in young calc-alkaline volcanic rocks from Guatemala. J Geol 94:412–418

    Google Scholar 

  • Brandon AD, Draper DS (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zone: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60:1739–1749

    Article  Google Scholar 

  • Brown GC, Thorpe R, Webb PC (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc Lond 141:413–426

    Article  Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Clark AH (1993) Are outsized porphyry copper deposits either anatomically or environmentally distinctive. Soc Econ Geol Spec Pub 2:213–282

    Google Scholar 

  • Conrad G, Conrad J, Girod M (1977) Les formation continentals tertiaries et quaternaries du bloc du lout (Iran): importances du plutonisme et du volcanisme. Mem H Ser Soc Geol France 8:53–75

    Google Scholar 

  • Conrey RM, Hooper PR, Larson PB, Chesley J, Ruiz J (2001) Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, MT Jefferson, Oregon. Contrib Min Petrol 141:710–732

    Google Scholar 

  • Dargahi S (2007) Miocene post-collision magmatism in region between Sar Cheshmeh and Shahr Babak, southwestern Kerman: investigation of isotopic data, petrogenetic analysis, geodynamic model for granitoid bodies, and role of adakitic magmatism in development of copper mineralization. Unpublished Ph.D. thesis, Shaheed Bahonar University of Kerman, Iran, p 306

  • Davies JH, Blanckenburg VF (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogenes. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1993) Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:547–550

    Article  Google Scholar 

  • Dehghani GA, Makris T (1983) The gravity field and crustal structure of Iran. Geol Surv Iran Rep 51:51–68

    Google Scholar 

  • Dercourt J, Zonenshain L, Ricou LE, Kazmin G, LePichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Dimitrijevic MD (1973) Geology of the Kerman region. Geol Surv Iran Rep 52:334

    Google Scholar 

  • Doe BR, Zartman RE (1979) Plumbotectonics I, The Phanerozoic. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edition. Wiley, New York, pp 22–70

    Google Scholar 

  • Emami MH, Mir Mohammad Sadeghi M, Omrani SJ (1993) Magmatic map of Iran (1:2,500,000 scale). Geol Surv Iran

  • Forster H (1978) Mesozoic–Cenozoic metallogenesis in Iran. J Geol Soc Lond 135:443–445

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Ghorashizadeh M (1978) Development of hypogene and supergene alteration and copper mineralization patterns, sar Cheshmeh porphyry copper deposit, Iran. M.Sc thesis Brock University, Canada, p 223

  • Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics 282:39–82

    Article  Google Scholar 

  • Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM (1985) Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochim Cosmochim Act 49:1797–1811

    Article  Google Scholar 

  • Haschke MR, Ben-Avraham Z (2005) Adakites from collision-modified lithosphere. Geophys Res Lett 32:L15302. doi:10.1029/2005GL023468

    Article  Google Scholar 

  • Haschke MR, Günther A (2003) Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31:933–936

    Article  Google Scholar 

  • Haschke M, Pearce JA (2006) Lithochemical exploration tools revisited: MnO and REE, GSA—Backbone of the Americas Meeting, Abstract 16–8, Mendoza

  • Haschke M, Siebel W, Günther A, Scheuber E (2002a) Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). J Geophys Res 107(B1):2019. doi:10.1029/2001JB000328

    Article  Google Scholar 

  • Haschke M, Scheuber E, Günther A, Reutter KJ (2002b) Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction. Terra Nova 14:49–56

    Article  Google Scholar 

  • Haschke M, Günther A, Melnick D, Echtler H, Reutter KJ, Scheuber E, Oncken O (2006) Andean tectonic evolution inferred from spatial and temporal variations in arc magmatism. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Sciences. Springer, Berlin, pp 333–349

    Google Scholar 

  • Hassanzadeh J (1993) Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Kerman province). Unpublished Ph.D. thesis, University of California, Los Angeles, p 204

  • Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from mount Pinatubo, Philippines, and Bingham canyon, Utah, USA. Min Deposit 36:799–806

    Article  Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier, Amsterdam, p 510

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Min Petrol 98:455–489

    Article  Google Scholar 

  • Hollings P, Cooke D, Clark A (2005) Regional geochemistry of Tertiary igneous rocks in central Chile: implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Econ Geol 100:887–904

    Article  Google Scholar 

  • Hou Z, Zhong D, Deng W, Khin Z (2005) A tectonic model for porphyry copper–molybdenum–gold deposits in the eastern Indo-Asian collision zone. In: Porter TM (ed) Supper porphyry copper and gold deposits: a global perspective. PGC, Adelaide

    Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75:458–484

    Google Scholar 

  • Kay SM, Mpodozis C (2001) Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust. GSA TODAY (Geol Soc Am) 11(3):4–9

    Article  Google Scholar 

  • Kirkham RV, Dunne KP (2000) World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geol Surv Can Open File 3792:26

    Google Scholar 

  • Lang JR, Titley SR (1998) Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of the genesis of porphyry copper deposits. Econ Geol 93:138–170

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Martin H (1987) Petrogenesis of Archean trondhjemites, tonalities and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • McInnes BIA, Evans NJ, Belousova E, Griffin WL (2003) Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. CSIRO Sci Res Rep 41

  • McInnes BIA, Evans NJ, Fu FQ, Garwin S (2005) Application of thermochronology to hydrothermal ore deposits. Rev Mineral Geochem 58:467–498

    Article  Google Scholar 

  • McLemore VT, Munroe EA, Heizler MT, McKee C (1999) Geochemistry of the copper Flat porphyry and associated mining district, Sierra County, New Mexico, USA. J Geochem Explor 67:167–189

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Nedimovic R (1973) Exploration for ore deposits in Kerman region. Geol Surv Iran Rep 53:247

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Sciences. Springer, Berlin, pp 3–27

    Google Scholar 

  • Oyarzun R, Marquez A, Lillo J, Lopez I, Rivera S (2001) Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Min Deposit 36:794–798

    Article  Google Scholar 

  • Pasteris JD (1996) Mount Pinatubo volcano and “negative” porphyry copper deposits. Geology 24:1075–1078

    Article  Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Let 121:227–244

    Article  Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly under-plated basaltic crust; the Cordillera Blanca batholith, Peru. J Petrol 37:1491–1521

    Article  Google Scholar 

  • Porter M (1998) An overview of the world’s porphyry and other hydrothermal copper and gold deposits and their distribution. In: Porter M (ed) Porphyry and hydrothermal copper and gold deposits: a global perspective. Perth, Conf Proc. Glenside, South Australia, Aus. Min. Found, pp 3–17

  • Qu XM, Hou ZQ, Li YG (2004) Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74:131–148

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Rapp RP, Shimizu N, Norma MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 Gpa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Razique A, Lo Grasso G, Livesey T (2007) Porphyry copper–gold deposits at Reko Diq complex, Chagai Hills Pakistan. Proceedings of Ninth Biennial SGA Meeting, Dublin

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ Geol 98:1515–1533

    Article  Google Scholar 

  • Richards JP, Kerrich R (2007) Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:537–576

    Article  Google Scholar 

  • Richards JP, McCulloch MT, Chappell BW, Kerrich R (1991) Source of metals in the Porgera gold deposit, Papua New Guinea: evidence from alteration, isotope, and noble metal geochemistry. Geochim Cosmochim Acta 55:565–580

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Econ Geol 96:271–305

    Article  Google Scholar 

  • Richards JP, Ullrich T, Kerrich R (2006) The late Miocene–Quaternary Antofalla volcanic complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential. J Volcan Geotherm Res 152:197–239

    Article  Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asia. Geodinamica Acta 7:169–218

    Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59

    Article  Google Scholar 

  • Saleeby J, Ducea M, Clemens-Knott D (2003) Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22:1064. doi:10.1029/2002TC001374

    Article  Google Scholar 

  • Samani B (1998) Distribution, setting and metallogenesis of copper deposits in Iran. In: Porter TM (ed) Porphyry and hydrothermal copper and gold deposits: a global Perspective, Perth, 1998, Conference Proceedings. Aust. Min. Found., Glenside, pp 135–158

    Google Scholar 

  • Saric V, Mijalkovic N (1973) Metallogenic map of Kerman region, 1:500000 scale. In: Exploration for ore deposits in Kerman region. Geol Surv Iran Rep 53:247

    Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409

    Article  Google Scholar 

  • Shafiei B (2008) Metallogenic model of Kerman porphyry copper belt and its exploratory approaches. Unpublished Ph.D. thesis, Shaheed Bahonar University of Kerman, Iran, p 257

  • Shafiei B, Shahabpour J (2008) Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. J Sci I. R. Iran 19(3):247–260

    Google Scholar 

  • Shafiei B, Shahabpour J, Sadloo M (1999) Geochemical characteristics, nature, and genesis of hypogene gold and silver in the Sar Cheshmeh porphyry copper deposit, Kerman. J Earth Sci 8:34–50

    Google Scholar 

  • Shahabpour J (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24:405–417

    Article  Google Scholar 

  • Shahabpour J (2007) Island-arc affinity of the Central Iranian Volcanic Belt. J Asian Earth Sci 30:652–665

    Article  Google Scholar 

  • Shahabpour J, Kramers JD (1987) lead isotope data from the Sar Cheshmeh porphyry copper deposit, Kerman, Iran. Min Deposit 22:278–281

    Google Scholar 

  • Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67:184–197

    Article  Google Scholar 

  • Spooner ETC (1993) Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au–Ag and Au skarn hydrothermal ore fluids. Ore Geol Rev 7:359–379

    Article  Google Scholar 

  • Stocklin J, Nabavi MH (1973) Tectonic map of Iran (1:2500000 Scale), Geol Surv Iran

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins: Geol Soc Lond Spec Pub 42:313–345

  • Tepper JH, Nelson BK, Bergantz GW, Irving AJ (1993) Petrology of the Chilliwack batholite, north Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contrib Mineral Petrol 113:333–351

    Article  Google Scholar 

  • Titley SR, Beane RE (1981) Porphyry copper deposits, part 1: geologic setting, petrology and tectogenesis. Econ Geol 75:214–269

    Google Scholar 

  • Tulloch AJ, Kimbrough DL (2003) Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: Peninsular Ranges batholith of Baja-California and Median batholith of New Zealand. Geol Soc Am Spec Pap 374:275–295

    Google Scholar 

  • Waight TE, Weaver SD, Muir RJ (1998) The Hohonu batholith the north Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contrib Mineral Petrol 130:225–239

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF, Bai ZH (2006) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89:424–446

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Zi F (2007) Partial melting of thickened or delaminated lower crust in the middle of Eastern China: implications for Cu–Au mineralization. J Geol 115:149–161

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappel BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • White AJR, Chappel BW (1983) Granitoid types and their distribution in Lachlan fold belt, southeastern Australia. In: Roddick JA (ed) Circum-Pacific plutonic terrains. Geol Soc Am Mem 159:21–34

  • Zen EA (1989) Aluminum enrichment in silicate melts by fractional crystallization: some mineralogical and petrographical constraints. J Petrol 27:1095–1118

    Google Scholar 

  • Zhang LC, Xiao WJ, Qin KZ, Ji JS, Zhang Qi (2006) The adakite connection of the Tuwa–Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr–Nd–Pb isotope geochemistry. Min Deposit 41:188–200

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the senior author’s Ph.D. dissertation at Shaheed Bahonar University of Kerman, Iran. Logistical and financial support were provided by the Research and Development center of National Iranian Cu Industries (NICICo). We are grateful to S. Ghasemi, A. Atashpanjeh, and M. Pourkani (NICICo) for providing drill core samples of Kerman porphyry Cu deposits, and Rio Tinto Ltd. for permission to use data from unpublished reports 2000–2001. We thank J. Ramezani (MIT, USA) for Sr–Nd–Pb isotopic measurements and A. van der Merwe for graphics work. We gratefully acknowledge J. Richards, P. Hollings, and F. Bouzari for constructive and helpful reviews, and we appreciate the very helpful suggestions and comments by the Editor B. Lehmann and Associate Editor T. Bissig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Haschke.

Additional information

Editorial handling: T. Bissig

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM 1

(186 KB DOC)

Table 4

Major (wt.%) and trace element (ppm) analyses of representative granitoid rocks in the KCMA (1.18 MB DOC)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafiei, B., Haschke, M. & Shahabpour, J. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44, 265–283 (2009). https://doi.org/10.1007/s00126-008-0216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0216-0

Keywords

Navigation