Mineralium Deposita

, Volume 39, Issue 4, pp 452–472

Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany


    • Department of Earth and Planetary SciencesAMNH
  • Rainer Thomas
    • GeoForschungsZentrum-Potsdam
  • Hans-Jürgen Förster
    • Institute of Earth SciencesUniversity of Potsdam
  • Reimar Seltmann
    • Department of Mineralogy, CERCAMSThe Natural History Museum
  • Christine Tappen
    • Department of Earth and Planetary SciencesAMNH

DOI: 10.1007/s00126-004-0423-2

Cite this article as:
Webster, J., Thomas, R., Förster, H. et al. Miner Deposita (2004) 39: 452. doi:10.1007/s00126-004-0423-2


We remelted and analyzed crystallized silicate melt inclusions in quartz from a porphyritic albite-zinnwaldite microgranite dike to determine the composition of highly evolved, shallowly intruded, Li- and F-rich granitic magma and to investigate the role of crystal fractionation and aqueous fluid exsolution in causing the extreme extent of magma differentiation. This dike is intimately associated with tin- and tungsten-mineralized granites of Zinnwald, Erzgebirge, Germany. Prior research on Zinnwald granite geochemistry was limited by the effects of strong and pervasive greisenization and alkali-feldspar metasomatism of the rocks. These melt inclusions, however, provide important new constraints on magmatic and mineralizing processes in Zinnwald magmas.

The mildly peraluminous granitic melt inclusions are strongly depleted in CAFEMIC constituents (e.g., CaO, FeO, MgO, TiO2), highly enriched in lithophile trace elements, and highly but variably enriched in F and Cl. The melt inclusions contain up to several thousand ppm Cl and nearly 3 wt% F, on average; several inclusions contain more than 5 wt% F. The melt inclusions are geochemically similar to the corresponding whole-rock sample, except that the former contain much more F and less CaO, FeO, Zr, Nb, Sr, and Ba. The Sr and Ba abundances are very low implying the melt inclusions represent magma that was more evolved than that represented by the bulk rock. Relationships involving melt constituents reflect increasing lithophile-element and halogen abundances in residual melt with progressive magma differentiation. Modeling demonstrates that differentiation was dominated by crystal fractionation involving quartz and feldspar and significant quantities of topaz and F-rich zinnwaldite. The computed abundances of the latter phases greatly exceed their abundances in the rocks, suggesting that the residual melt was separated physically from phenocrysts during magma movement and evolution.

Interactions of aqueous fluids with silicate melt were also critical to magma evolution. To better understand the role of halogen-charged, aqueous fluids in magmatic differentiation and in subsequent mineralization and metasomatism of the Zinnwald granites, Cl-partitioning experiments were conducted with a F-enriched silicate melt and aqueous fluids at 2,000 bar (200 MPa). The results of the experimentally determined partition coefficients for Cl and F, the compositions of fluid inclusions in quartz and other phenocrysts, and associated geochemical modeling point to an important role of magmatic-hydrothermal fluids in influencing magma geochemistry and evolution. The exsolution of halogen-charged fluids from the Li- and F-enriched Zinnwald granitic magma modified the Cl, alkali, and F contents of the residual melt, and may have also sequestered Li, Sn, and W from the melt. Many of these fluids contained strongly elevated F concentrations that were equivalent to or greater than their Cl abundances. The exsolution of F-, Cl-, Li-, ± W- and Sn-bearing hydrothermal fluids from Zinnwald granite magmas was important in effecting the greisenizing and alkali-feldspathizing metasomatism of the granites and the concomitant mineralization.


FluorineChlorineLithiumTinMelt inclusionsGranitesTin mineralization

Copyright information

© Springer-Verlag 2004