, Volume 49, Issue 8, pp 1881-1892
Date: 10 May 2006

Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control

Abstract

Aims/hypothesis

Hyperlipidaemia often occurs in patients with type 2 diabetes mellitus. Though HMG-CoA reductase inhibitors (statins) are widely used for controlling hypercholesterolemia, atorvastatin has also been reported to have an adverse effect on glucose metabolism. Based on these findings, the aim of this study was to investigate the effects of statins on adipocytes, which play pivotal roles in glucose metabolism.

Methods

In 3T3-L1 cells, effects of statins on adipocyte maturation were determined morphologically. Protein and mRNA levels of SLC2A4 and adipocyte marker proteins were determined by immunoblotting and RT-PCR, respectively. Type 2 diabetic NSY mice were treated with atorvastatin for 15 weeks, followed by glucose and insulin tolerance tests and examination of SLC2A4 expression in white adipose tissue (WAT). Seventy-eight Japanese subjects with type 2 diabetes and hypercholesterolaemia were treated with atorvastatin (10 mg/day), and its effects on lipid and glycaemic profiles were measured 12 weeks after treatment initiation.

Results

Treatment with atorvastatin inhibited adipocyte maturation, SLC2A4 and C/EBPα expressions and insulin action in 3T3-L1 cells. Atorvastatin also attenuated SLC2A4 and C/EBPα expressions in differentiated 3T3-L1 adipocytes. These effects were reversed by l-mevalonate or geranylgeranyl pyrophosphate. In NSY mice, atorvastatin accelerated glucose intolerance as a result of insulin resistance and decreased SLC2A4 expression in WAT. In addition to improving hyperlipidaemia, atorvastatin treatment significantly increased HbA1c but not fasting glucose levels in diabetic patients, and this effect was greater in the non-obese subgroup.

Conclusions/interpretation

These results demonstrate that atorvastatin attenuates adipocyte maturation and SLC2A4 expression by inhibiting isoprenoid biosynthesis, and impairs glucose tolerance. These actions of atorvastatin could potentially affect the control of type 2 diabetes.