, Volume 49, Issue 1, pp 174-182
Date: 10 Dec 2005

The role of protein kinase B/Akt in insulin-induced inactivation of phosphorylase in rat hepatocytes

Abstract

Aims/hypothesis

An insulin signalling pathway leading from activation of protein kinase B (PKB, also known as Akt) to phosphorylation (inactivation) of glycogen synthase kinase-3 (GSK-3) and activation of glycogen synthase is well characterised. However, in hepatocytes, inactivation of GSK-3 is not the main mechanism by which insulin stimulates glycogen synthesis. We therefore tested whether activation of PKB causes inactivation of glycogen phosphorylase.

Materials and methods

We used a conditionally active form of PKB, produced using recombinant adenovirus, to test the role of acute PKB activation in the control of glycogen phosphorylase and glycogen synthesis in hepatocytes.

Results

Conditional activation of PKB mimicked the inactivation of phosphorylase, the activation of glycogen synthase, and the stimulation of glycogen synthesis caused by insulin. In contrast, inhibition of GSK-3 caused activation of glycogen synthase but did not mimic the stimulation of glycogen synthesis by insulin. PKB activation and GSK-3 inhibition had additive effects on the activation of glycogen synthase, indicating convergent mechanisms downstream of PKB involving inactivation of either phosphorylase or GSK-3. Glycogen synthesis correlated inversely with the activity of phosphorylase-a, irrespective of whether this was modulated by insulin, by PKB activation or by a selective phosphorylase ligand, supporting an essential role for phosphorylase inactivation in the glycogenic action of insulin in hepatocytes.

Conclusions/interpretation

In hepatocytes, the acute activation of PKB, but not the inhibition of GSK-3, mimics the stimulation of glycogen synthesis by insulin. This is explained by a pathway downstream of PKB leading to inactivation of phosphorylase, activation of glycogen synthase, and stimulation of glycogen synthesis, independent of the GSK-3 pathway.