, Volume 47, Issue 2, pp 249-258
Date: 13 Jan 2004

Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1

Abstract

Aims/hypothesis

Pancreatic beta-cell apoptosis is a common feature of Type 1 and Type 2 diabetes and leptin exerts an anti-apoptotic function in these cells. The beta-cell line INS-1 was used to test the hypothesis that the adipocyte hormone adiponectin might mediate an anti-apoptotic effect comparable to leptin.

Methods

Apoptosis was induced by culturing cells with a cytokine combination (interleukin-1β/interferon-γ) or palmitic acid in absence or presence of leptin or the globular domain of adiponectin (gAcrp30), respectively.

Results

INS-1 cells had a prominent sensitivity towards cytokine- and fatty acid-induced apoptosis, resulting in about three- and six-fold increases in caspase 3 activation and DNA fragmentation, respectively. gAcrp30 strongly (50–60%) inhibited palmitic acid-induced apoptosis, with a weaker effect against cytokine-induced apoptosis (35%). The same result was observed for leptin with both adipokines being non-additive. Reduction of apoptosis by an inhibitor of IκB-kinase (IKK) indicated the involvement of the nuclear factor (NF)-κB pathway in both cytokine- and fatty acid-induced apoptosis, however, leptin and gAcrp30 were unable to block NF-κB activation. Cytokine- and fatty-acid-induced suppression of glucose/forskolin-stimulated insulin secretion was completely prevented through the action of gAcrp30, whereas leptin was only effective against lipotoxicity-mediated beta-cell dysfunction.

Conclusion/interpretation

Our data show that gAcrp30 partially rescues beta cells from cytokine- and fatty-acid-induced apoptosis and completely restores autoimmune- and lipotoxicity-induced dysfunction of insulin-producing cells. We suggest that gAcrp30 exerts its anti-apoptotic function without modulating NF-κB activation. This novel beta cell protective function of gAcrp30 might serve to counteract autoimmune- and lipotoxicity-induced beta-cell destruction.