, Volume 103, Issue 6-7, pp 920-929

Defense response genes co-localize with quantitative disease resistance loci in pepper

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Functional bases of polygenically inherited disease resistance are still unknown. In recent years, molecular dissection of polygenic resistance has led to the identification and location of quantitative trait loci (QTLs) on many plant genetic linkage maps. This process is a pre-requisite for resistance QTL characterization at a molecular and functional level. Here, we report the use of a candidate gene approach based on the hypothesis that some resistance QTLs previously mapped in pepper may correspond to defense response (DR) genes. Degenerate oligonucleotide primers were designed for conserved regions of two DR gene families: pathogenesis-related proteins (PR) of class 2 (β-1,3-glucanase) and PR proteins of class 5 (antifungal activity). Cloned pepper PCR-products as well as other solanaceous DR gene families were used as RFLP probes for mapping in three intraspecific maps of the pepper genome. A total of 12 probes out of 23 were positioned and generated 16 loci. Some DR probes revealed multiple gene copies in the pepper genome (PR5, β-1,3-glucanase, chitinase and Glutathione S-transferase). Genes encoding acidic and basic β-1,3-glucanases were clustered on linkage group (LG) P1a, whereas genes encoding chitinases occurred on several LGs (P1b, P2a and P5). A class-III chitinase gene co-localized with a major-effect QTL controlling resistance to Phytophthora capsici on LG P5. PR4, PR2 and PR10 loci mapped within the region of resistance QTLs to P. capsici (LG P1b), Potato virus Y (LG P1a) and Potyvirus E (LG P3), respectively. A digenic interaction between a PR4 and a PR2 loci explained a large effect (35%) of the resistance to Potyvirus E.

Received: 21 August 2000 / Accepted: 15 December 2000