, Volume 95, Issue 1-2, pp 73-82

Conservation of S-locus for self-incompatibility in Brassica napus (L.) and Brassica oleracea (L.)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


 Self-incompatibility (SI) in Brassica is a sporophytic system, genetically determined by alleles at the S-locus, which prevents self-fertilization and encourages outbreeding. This system occurs naturally in diploid Brassica species but is introduced into amphidiploid Brassica species by interspecific breeding, so that in both cases there is a potential for yield increase due to heterosis and the combination of desirable characteristics from both parental lines. Using a polymerase chain reaction (PCR) based analysis specific for the alleles of the SLG (S-locus glycoprotein gene) located on the S-locus, we genetically mapped the S-locus of B. oleracea for SI using a F2 population from a cross between a rapid-cycling B. oleracea line (CrGC-85) and a cabbage line (86-16-5). The linkage map contained both RFLP (restriction fragment length polymorphism) and RAPD (random amplified polymorphic DNA) markers. Similarly, the S-loci were mapped in B. napus using two different crosses (91-SN-5263×87-DHS-002; 90-DHW-1855-4×87-DHS-002) where the common male parent was self-compatible, while the S-alleles introgressed in the two different SI female parents had not been characterized. The linkage group with the S-locus in B. oleracea showed remarkable homology to the corresponding linkage group in B. napus except that in the latter there was an additional locus present, which might have been introgressed from B. rapa. The S-allele in the rapid-cycling Brassica was identified as the S29 allele, the S-allele of the cabbage was the S 5 allele. These same alleles were present in our two B. napus SI lines, but there was evidence that it might not be the active or major SI allele that caused self-incompatibility in these two B. napus crosses.

Received: 7 June 1996/Accepted: 6 September 1996